Wang Zixiang, Zhu Yinghao, Sui Dehao, Wang Tianlong, Zhang Yuntao, Wang Yasha, Pan Chengwei, Gao Junyi, Ma Liantao, Wang Ling, Zhang Xiaoyun
Peking University, Beijing, China.
Beihang University, Beijing, China.
STAR Protoc. 2025 Mar 21;6(1):103669. doi: 10.1016/j.xpro.2025.103669. Epub 2025 Mar 5.
The lack of standardized techniques for processing complex health data from COVID-19 patients hinders the development of accurate predictive models in healthcare. To address this, we present a protocol for utilizing real-world multivariate time-series electronic health records of COVID-19 patients. We describe steps for covering the necessary setup, data standardization, and formatting. We then provide detailed instructions for creating datasets and for training and evaluating AI models designed to predict two key outcomes: in-hospital mortality and length of stay. For complete details on the use and execution of this protocol, please refer to Gao et al..
缺乏处理来自新冠肺炎患者复杂健康数据的标准化技术,阻碍了医疗保健领域准确预测模型的开发。为解决这一问题,我们提出了一种利用新冠肺炎患者真实世界多变量时间序列电子健康记录的方案。我们描述了涵盖必要设置、数据标准化和格式化的步骤。然后,我们提供了创建数据集以及训练和评估旨在预测两个关键结果(住院死亡率和住院时长)的人工智能模型的详细说明。有关本方案使用和执行的完整详细信息,请参考高等人的研究。