Agmon Shunit, Singer Uriel, Radinsky Kira
Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
JMIR AI. 2024 Oct 2;3:e49546. doi: 10.2196/49546.
Women have been underrepresented in clinical trials for many years. Machine-learning models trained on clinical trial abstracts may capture and amplify biases in the data. Specifically, word embeddings are models that enable representing words as vectors and are the building block of most natural language processing systems. If word embeddings are trained on clinical trial abstracts, predictive models that use the embeddings will exhibit gender performance gaps.
We aim to capture temporal trends in clinical trials through temporal distribution matching on contextual word embeddings (specifically, BERT) and explore its effect on the bias manifested in downstream tasks.
We present TeDi-BERT, a method to harness the temporal trend of increasing women's inclusion in clinical trials to train contextual word embeddings. We implement temporal distribution matching through an adversarial classifier, trying to distinguish old from new clinical trial abstracts based on their embeddings. The temporal distribution matching acts as a form of domain adaptation from older to more recent clinical trials. We evaluate our model on 2 clinical tasks: prediction of unplanned readmission to the intensive care unit and hospital length of stay prediction. We also conduct an algorithmic analysis of the proposed method.
In readmission prediction, TeDi-BERT achieved area under the receiver operating characteristic curve of 0.64 for female patients versus the baseline of 0.62 (P<.001), and 0.66 for male patients versus the baseline of 0.64 (P<.001). In the length of stay regression, TeDi-BERT achieved a mean absolute error of 4.56 (95% CI 4.44-4.68) for female patients versus 4.62 (95% CI 4.50-4.74, P<.001) and 4.54 (95% CI 4.44-4.65) for male patients versus 4.6 (95% CI 4.50-4.71, P<.001).
In both clinical tasks, TeDi-BERT improved performance for female patients, as expected; but it also improved performance for male patients. Our results show that accuracy for one gender does not need to be exchanged for bias reduction, but rather that good science improves clinical results for all. Contextual word embedding models trained to capture temporal trends can help mitigate the effects of bias that changes over time in the training data.
多年来,女性在临床试验中的代表性一直不足。基于临床试验摘要训练的机器学习模型可能会捕捉并放大数据中的偏差。具体而言,词嵌入模型能够将单词表示为向量,是大多数自然语言处理系统的构建基础。如果基于临床试验摘要训练词嵌入模型,那么使用这些嵌入的预测模型将会表现出性别性能差距。
我们旨在通过对上下文词嵌入(具体来说,是BERT)进行时间分布匹配来捕捉临床试验中的时间趋势,并探究其对下游任务中所表现出的偏差的影响。
我们提出了TeDi-BERT,这是一种利用女性参与临床试验人数增加这一趋势来训练上下文词嵌入的方法。我们通过对抗分类器实现时间分布匹配,试图根据嵌入来区分新旧临床试验摘要。时间分布匹配是一种从旧临床试验到新临床试验的领域适应形式。我们在两项临床任务上评估我们的模型:重症监护病房非计划再入院预测和住院时间预测。我们还对所提出的方法进行了算法分析。
在再入院预测中,TeDi-BERT在女性患者中的受试者工作特征曲线下面积为0.64,而基线为0.62(P<0.001);在男性患者中为0.66,而基线为0.64(P<0.001)。在住院时间回归分析中,TeDi-BERT在女性患者中的平均绝对误差为4.56(95%置信区间4.44-4.68),而基线为4.62(95%置信区间4.50-4.74,P<0.001);在男性患者中为4.54(95%置信区间4.44-4.65),而基线为4.6(95%置信区间4.50-4.71,P<0.001)。
在这两项临床任务中,正如预期的那样,TeDi-BERT提高了女性患者的性能;但它也提高了男性患者的性能。我们的结果表明,不需要为了减少偏差而牺牲某一性别的准确性,而是良好的科学方法能改善所有患者的临床结果。经过训练以捕捉时间趋势的上下文词嵌入模型有助于减轻训练数据中随时间变化的偏差影响。