Suppr超能文献

威尔士绵羊群体的新特征描述:主要羊群类型学和抗菌药物使用模式的描述。

Novel characterisation of sheep flocks in Wales: A description of principal flock typologies and antimicrobial use patterns.

机构信息

University of Bristol Veterinary School, Langford, Bristol BS40 5DU, United Kingdom.

University of Bristol Veterinary School, Langford, Bristol BS40 5DU, United Kingdom.

出版信息

Prev Vet Med. 2024 Dec;233:106352. doi: 10.1016/j.prevetmed.2024.106352. Epub 2024 Sep 27.

Abstract

There is increasing pressure to reduce and refine antimicrobial use (AMU) in farmed livestock, to slow the development of antimicrobial resistance (AMR) and preserve the efficacy of antimicrobials (AMs) in both humans and animals. Developing strategies to help drive the prudent use of AMs requires an understanding of the direct and indirect factors influencing the between-farm variation in AMU typically observed. Given limited evidence of risk factors in sheep, this exploratory study aimed to investigate whether sheep flocks could be classified into farm types based on farm characteristics, health parameters and management practices, and whether important differences existed in AMU between these flock types. This study was conducted on 22 sheep flocks in Wales, United Kingdom as part of a wider longitudinal study on AMU and AMR. Comprehensive surveys were administered to flocks where 147 variables regarding farm characteristics, flock health parameters and management practices were captured. AMU data for each flock were also collated. A Multiple Correspondence Analysis (MCA), followed by a Hierarchical Clustering on Principal Components (HCPC) analysis, were used to classify the flocks. The top 10 dimensions yielded by MCA explained 67.4 % of the total variance. Nine partitions of relatively homogeneous flocks, derived from three typologies produced from the first three cut-points of the HCPC dendrogram, were visualised and described. These nine partitions were characterised by 70 variable categories, principally the implementation or neglect of best-practice lameness management practices. Partitions of flocks that neglected best-practice lameness managements - characterised by delayed treatments of lame sheep, footbathing and bleeding when foot trimming - reported higher lameness prevalence and fewer lame ewes recovering within five days of treatment. These flocks had higher total AMU (mg/PCU) and used a higher mass of injectable AMs than other partitions of flocks. Flock traits, lambing practices, disease challenges and other management factors also described partitions derived in later dendrogram cuts. Findings from this study confirm good AM stewardship in sheep flocks to be a complex picture, given the typologies of flocks described and the range of factors likely to influence AMU. Opportunities for targeted strategies for sustainable reductions in AMU can be directed towards specific flock types identified, specifically within the context of lameness treatment and control. We highlight the importance of understanding flock heterogeneity, through the construction of typologies, as a means to fine-tune appropriate interventions to specific flock types in order to help drive more prudent use of AMs.

摘要

减少和优化养殖业中的抗菌药物使用(AMU)以减缓抗菌药物耐药性(AMR)的发展并维持人类和动物抗菌药物(AMs)的疗效的压力日益增加。制定有助于推动审慎使用 AMs 的策略需要了解直接和间接因素,这些因素通常会影响农场之间 AMU 的变化。鉴于绵羊的风险因素证据有限,这项探索性研究旨在调查是否可以根据农场特征、健康参数和管理实践将绵羊群分为农场类型,以及这些羊群类型之间的 AMU 是否存在重要差异。这项研究是在英国威尔士的 22 个绵羊群中进行的,作为关于 AMU 和 AMR 的更广泛纵向研究的一部分。对羊群进行了综合调查,收集了关于农场特征、羊群健康参数和管理实践的 147 个变量。还整理了每个羊群的 AMU 数据。使用多元对应分析(MCA),然后是基于主成分的层次聚类分析(HCPC),对羊群进行分类。MCA 产生的前 10 个维度解释了总方差的 67.4%。来自 HCPC 树状图前三个截断点的三个分类法产生的九个相对同质的羊群分区被可视化和描述。这九个分区的特点是 70 个变量类别,主要是实施或忽视最佳跛行管理实践。忽视最佳跛行管理实践的羊群分区 - 以延迟治疗跛行羊、足部洗浴和足部修剪时出血为特征 - 报告了更高的跛行发生率和更少的跛行母羊在治疗后五天内恢复。这些羊群的总 AMU(mg/PCU)更高,使用的可注射 AMs 质量也高于其他羊群分区。农场特征、产羔实践、疾病挑战和其他管理因素也描述了后来树状图切割产生的分区。这项研究的结果证实,鉴于描述的羊群分类法和可能影响 AMU 的各种因素,良好的 AM 管理在绵羊群中是一个复杂的问题。有针对性的可持续减少 AMU 的策略机会可以针对特定的羊群类型,特别是在跛行治疗和控制方面。我们强调通过构建分类法了解羊群异质性的重要性,作为一种微调特定羊群类型的适当干预措施的手段,以帮助推动更审慎地使用 AMs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验