Suppr超能文献

揭示耦合电催化和过硫酸盐氧化反应中电子转移和自由基转化途径,用于去除复杂污染物。

Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal.

机构信息

School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.

School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.

出版信息

Water Res. 2024 Dec 1;267:122456. doi: 10.1016/j.watres.2024.122456. Epub 2024 Sep 20.

Abstract

The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/NaSO/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and O effect. The system also exhibited low energy consumption (0.215 kWh/m·order), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.

摘要

通过高级氧化工艺(AOPs)降解废水中的多种有机污染物可能涉及不同的自由基,这些自由基的类型和浓度因与不同污染物的相互作用而有所不同。在这项研究中,采用先进的活性炭布(ACC)作为电极,电化学活化过一硫酸盐(E/PMS)用于同时降解混合污染物,如甲硝唑(MNZ)和对氯苯胺(PCA)。在低电流密度和低过一硫酸盐浓度下,MNZ 在阴极和 PCA 在阳极的降解率分别为 92.5%和 91.4%。在 E/PMS/MNZ(PCA)体系中同时去除 MNZ 和 PCA 的速率常数分别比单独的 PMS 体系高 118 倍和 6 倍,比 E/NaSO/MNZ(PCA)体系高 2.5 倍和 1.6 倍。不同的电化学特性、电子顺磁共振(EPR)图谱和自由基猝灭试验验证了 MNZ 和 PCA 在最佳体系中的降解主要通过非自由基主导的氧化进行,涉及电子转移和 O 效应。该体系还表现出低能耗(0.215 kWh/m·order)、宽操作 pH 范围、对水基质的优异去除效率和低副产物毒性,表明其在实际应用中具有很强的潜力。ACC 具有超级稳定、低成本和电化学活性,使其成为一种有前途的材料,可应用于 E/PMS 体系中,用于降解多种污染物。该研究进一步阐明了电极材料中污染物与自由基和非自由基转化的相互作用机制,为该体系在处理复杂废水方面的应用提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验