Suppr超能文献

过一硫酸根活化电芬顿体系中富电子污染物的选择性氧化:微环境调控阴极的作用

Selective oxidation of electron-rich pollutants in peroxymonosulfate-activated electro-Fenton system: The role of microenvironment-regulated cathode.

作者信息

Wang Zining, Xie Aiyang, Li Zonglin, Chu Wenhai, Lu Xunyu, Zeng Jianrong, Zhao Hongying

机构信息

Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Particles and Catalysis Research Group, School of Chemical Engineering, University of New South Wales, New South Wales 2052, Sydney, Australia.

Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

出版信息

Water Res. 2025 Jan 1;268(Pt B):122699. doi: 10.1016/j.watres.2024.122699. Epub 2024 Oct 24.

Abstract

Electro-Fenton technologies driven by peroxymonosulfate (PMS) activation have been extensively explored for abatement of organic pollutants from water. Unfortunately, a great diversity of matrix components in contaminated water scenarios inevitably and significantly compromises the efficiency of the generated radicals toward target pollutants. Thus, selective oxidation of the electro-Fenton technologies is urgently desired for cost effective and sustainable water treatment, but challenged by the traditional electron transfer pathway from cathode to PMS to mainly form SO and HO radicals. In this study, we successfully realized selective generation of O, a non-radical species specific for electron-rich pollutants, by regulating the second-shell coordination environment of single-atom Fe in carbonaceous cathode. The doped electron-accepting B drives directional electron transfer from PMS to electrode and inhibiting the undesirable radical pathways. Besides, the electrochemical reduction of H in-situ generated from the dissociation of H-O in PMS is favourable for the formation of O as high as 163.4 μmolLmin. Fast and preferential removal of sulfonamides pollutants in different water matrices demonstrated the excellent matrix tolerance of the newly developed electro-Fenton process. A pilot electrochemical device was designed to further selective remove phenols in real-scenario application. No residual phenol was detected (<0.01 mg/L) with TOC removal around 50% (down to 23.9±0.3 mg L) during the continuous 24-h operation. This study is also believed to shed new light on how to achieve desirable electrochemical reactions via microenvironmental regulation in response to sustainable water decontamination and beyond.

摘要

由过一硫酸盐(PMS)活化驱动的电芬顿技术已被广泛研究用于去除水中的有机污染物。不幸的是,受污染水场景中大量不同的基质成分不可避免地且显著地降低了所产生的自由基对目标污染物的氧化效率。因此,为了实现具有成本效益和可持续的水处理,迫切需要电芬顿技术的选择性氧化,但传统的从阴极到PMS的电子转移途径主要形成SO和HO自由基,这对此构成了挑战。在本研究中,我们通过调节碳质阴极中单原子铁的第二壳层配位环境,成功实现了对富电子污染物具有特异性的非自由基物种O的选择性生成。掺杂的电子受体B驱动电子从PMS定向转移到电极,并抑制了不良的自由基途径。此外,PMS中H-O解离原位生成的H的电化学还原有利于高达163.4 μmolLmin的O的形成。在不同水基质中快速且优先去除磺胺类污染物证明了新开发的电芬顿工艺具有出色的基质耐受性。设计了一个中试电化学装置,以在实际场景应用中进一步选择性去除酚类。在连续24小时运行期间,未检测到残留酚(<0.01 mg/L),TOC去除率约为50%(降至23.9±0.3 mg L)。本研究还被认为为如何通过微环境调节实现理想的电化学反应以应对可持续的水净化及其他问题提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验