Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA.
RNA. 2024 Nov 18;30(12):1674-1685. doi: 10.1261/rna.080247.124.
Fungal Trl1 is an essential tRNA splicing enzyme composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that convert the 2',3'-cyclic-PO and 5'-OH ends of tRNA exons into the 3'-OH,2'-PO and 5'-PO termini required for sealing by an N-terminal ATP-dependent ligase domain. Trifunctional Trl1 enzymes are present in most human fungal pathogens and are untapped targets for antifungal drug discovery. Mucorales species, deemed high-priority human pathogens by WHO, elaborate a noncanonical tRNA splicing apparatus in which a stand-alone monofunctional RNA ligase enzyme joins 3'-OH,2'-PO and 5'-PO termini. Here we identify a stand-alone polynucleotide kinase (MciKIN) and affirm its biological activity in tRNA splicing by genetic complementation in yeast. Recombinant MciKIN catalyzes magnesium-dependent phosphorylation of 5'-OH RNA and DNA ends in vitro. MciKIN displays a strong preference for GTP as the phosphate donor in the kinase reaction, a trait shared with the stand-alone RNA kinase homologs from Mucorales species (RazKIN) and (LcoKIN) and with the kinase domains of fungal Trl1 enzymes. We report a 1.65 Å crystal structure of RazKIN in complex with GDP•Mg that illuminates the basis for guanosine nucleotide specificity.
真菌 Trl1 是一种必需的 tRNA 剪接酶,由 C 端环状磷酸二酯酶和中央多核苷酸激酶末端修复域组成,它将 tRNA 外显子的 2'、3'-环磷酸和 5'-OH 末端转化为 3'-OH、2'-PO 和 5'-PO 末端,这些末端是由 N 端 ATP 依赖性连接酶域封闭所必需的。三功能 Trl1 酶存在于大多数人类真菌病原体中,是未被开发的抗真菌药物发现靶点。被世界卫生组织(WHO)视为高优先级人类病原体的毛霉目中的物种,精心设计了一种非典型的 tRNA 剪接装置,其中一个独立的单功能 RNA 连接酶酶将 3'-OH、2'-PO 和 5'-PO 末端连接在一起。在这里,我们鉴定了一个独立的多核苷酸激酶(MciKIN),并通过酵母中的遗传互补证实了其在 tRNA 剪接中的生物学活性。重组 MciKIN 在体外催化镁依赖性 5'-OH RNA 和 DNA 末端的磷酸化。MciKIN 在激酶反应中强烈偏爱 GTP 作为磷酸供体,这一特性与毛霉目物种中的独立 RNA 激酶同源物(RazKIN)和(LcoKIN)以及真菌 Trl1 酶的激酶结构域共享。我们报告了 RazKIN 与 GDP•Mg 复合物的 1.65 Å 晶体结构,阐明了鸟嘌呤核苷酸特异性的基础。