Suppr超能文献

荟萃分析中测量尺度的映射,应用于儿童体重指数的测量。

Mapping between measurement scales in meta-analysis, with application to measures of body mass index in children.

机构信息

Bristol Medical School, University of Bristol, Bristol, UK.

出版信息

Res Synth Methods. 2024 Nov;15(6):1072-1093. doi: 10.1002/jrsm.1758. Epub 2024 Oct 2.

Abstract

Quantitative evidence synthesis methods aim to combine data from multiple medical trials to infer relative effects of different interventions. A challenge arises when trials report continuous outcomes on different measurement scales. To include all evidence in one coherent analysis, we require methods to "map" the outcomes onto a single scale. This is particularly challenging when trials report aggregate rather than individual data. We are motivated by a meta-analysis of interventions to prevent obesity in children. Trials report aggregate measurements of body mass index (BMI) either expressed as raw values or standardized for age and sex. We develop three methods for mapping between aggregate BMI data using known or estimated relationships between measurements on different scales at the individual level. The first is an analytical method based on the mathematical definitions of z-scores and percentiles. The other two approaches involve sampling individual participant data on which to perform the conversions. One method is a straightforward sampling routine, while the other involves optimization with respect to the reported outcomes. In contrast to the analytical approach, these methods also have wider applicability for mapping between any pair of measurement scales with known or estimable individual-level relationships. We verify and contrast our methods using simulation studies and trials from our data set which report outcomes on multiple scales. We find that all methods recreate mean values with reasonable accuracy, but for standard deviations, optimization outperforms the other methods. However, the optimization method is more likely to underestimate standard deviations and is vulnerable to non-convergence.

摘要

定量证据综合方法旨在结合多个医学试验的数据,推断不同干预措施的相对效果。当试验报告不同测量尺度上的连续结果时,就会出现一个挑战。为了在一个连贯的分析中包含所有证据,我们需要方法将“映射”结果到一个单一的尺度上。当试验报告的是汇总而不是个体数据时,这尤其具有挑战性。我们的动机是对预防儿童肥胖的干预措施进行荟萃分析。试验报告的是体重指数(BMI)的汇总测量值,要么表示为原始值,要么标准化为年龄和性别。我们开发了三种方法,用于使用个体水平上不同尺度之间的已知或估计关系来映射汇总 BMI 数据。第一种是基于 z 分数和百分位数的数学定义的分析方法。另外两种方法涉及对个体参与者数据进行转换。一种方法是直接的抽样程序,而另一种方法则涉及针对报告的结果进行优化。与分析方法相比,这些方法还具有更广泛的适用性,可用于具有已知或可估计的个体水平关系的任何一对测量尺度之间的映射。我们使用模拟研究和我们的数据集中报告多个尺度结果的试验来验证和对比我们的方法。我们发现,所有方法都能以合理的精度重现平均值,但对于标准差,优化方法优于其他方法。然而,优化方法更有可能低估标准差,并且容易出现不收敛的情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验