Suppr超能文献

超越可见故障:使用症状描述转移对电力断路器进行零样本诊断。

Beyond seen faults: Zero-shot diagnosis of power circuit breakers using symptom description transfer.

作者信息

Yang Qiuyu, Zhai Zhenlin, Lin Yuyi, Liao Yuxiang, Xie Jingyi, Xue Xue, Ruan Jiangjun

机构信息

School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, China; School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China.

School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, China.

出版信息

ISA Trans. 2024 Dec;155:512-523. doi: 10.1016/j.isatra.2024.09.020. Epub 2024 Sep 20.

Abstract

Power circuit breakers (CBs) are vital for the control and protection of power systems, yet diagnosing their faults accurately remains a challenge due to the diversity of fault types and the complexity of their structures. Traditional data-driven methods, although effective, require extensive labeled data for each fault class, limiting their applicability in real-world scenarios where many faults are unseen. This paper addresses these limitations by introducing symptom description transfer-based zero-shot fault diagnosis (SDT-ZSFD), a method that leverages zero-shot learning for fault diagnosis. Our approach constructs a fault symptom description (FSD) framework, which embeds a fault symptom layer between the feature layer and the label layer to facilitate knowledge transfer from seen to unseen fault classes. The method utilizes current and acceleration signals collected during CB operation to extract features. By applying sparse principal component analysis to these signals, we derive high-quality features that are mapped to the FSD framework, enabling effective zero-shot learning. Our method achieves a satisfactory recognition rate by accurately diagnosing unseen faults based on these symptoms. This approach not only overcomes the data scarcity problem but also holds potential for practical applications in power system maintenance. The SDT-ZSFD method offers a reliable solution for CB fault diagnosis and provides a foundation for future improvements in symptom-based zero-shot diagnostic mechanisms and algorithmic robustness.

摘要

电力断路器对电力系统的控制和保护至关重要,但由于故障类型的多样性及其结构的复杂性,准确诊断其故障仍然是一项挑战。传统的数据驱动方法虽然有效,但需要为每个故障类别提供大量的标注数据,这限制了它们在许多故障不可见的实际场景中的适用性。本文通过引入基于症状描述转移的零样本故障诊断(SDT-ZSFD)来解决这些限制,这是一种利用零样本学习进行故障诊断的方法。我们的方法构建了一个故障症状描述(FSD)框架,该框架在特征层和标签层之间嵌入了一个故障症状层,以促进从可见故障类别到不可见故障类别的知识转移。该方法利用断路器运行期间收集的电流和加速度信号来提取特征。通过对这些信号应用稀疏主成分分析,我们得到了高质量的特征,并将其映射到FSD框架中,从而实现有效的零样本学习。我们的方法通过基于这些症状准确诊断不可见故障,实现了令人满意的识别率。这种方法不仅克服了数据稀缺问题,而且在电力系统维护的实际应用中具有潜力。SDT-ZSFD方法为断路器故障诊断提供了一种可靠的解决方案,并为基于症状的零样本诊断机制和算法鲁棒性的未来改进奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验