School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, 350118, PR China.
School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, PR China.
Neural Netw. 2024 Dec;180:106681. doi: 10.1016/j.neunet.2024.106681. Epub 2024 Aug 31.
Ensuring the stability of high-voltage circuit breakers (HVCBs) is crucial for maintaining an uninterrupted supply of electricity. Existing fault diagnosis methods typically rely on extensive labeled datasets, which are challenging to obtain due to the unique operational contexts and complex mechanical structures of HVCBs. Additionally, these methods often cater to specific HVCB models and lack generalizability across different types, limiting their practical applicability. To address these challenges, we propose a novel cross-domain zero-shot learning (CDZSL) approach specifically designed for HVCB fault diagnosis. This approach incorporates an adaptive weighted fusion strategy that combines vibration and current signals. To bypass the constraints of manual fault semantics, we develop an automatic semantic construction method. Furthermore, a multi-channel residual convolutional neural network is engineered to distill deep, low-level features, ensuring robust cross-domain diagnostic capabilities. Our model is further enhanced with a local subspace embedding technique that effectively aligns semantic features within the embedding space. Comprehensive experimental evaluations demonstrate the superior performance of our CDZSL approach in diagnosing faults across various HVCB types.
确保高压断路器 (HVCB) 的稳定性对于维持电力的不间断供应至关重要。现有的故障诊断方法通常依赖于广泛的标记数据集,但由于 HVCB 的独特操作环境和复杂的机械结构,这些数据集难以获取。此外,这些方法通常针对特定的 HVCB 模型,缺乏跨不同类型的通用性,限制了它们的实际应用。为了解决这些挑战,我们提出了一种专门针对 HVCB 故障诊断的新型跨域零样本学习 (CDZSL) 方法。该方法采用了自适应加权融合策略,结合了振动和电流信号。为了避免手动故障语义的限制,我们开发了一种自动语义构建方法。此外,设计了一个多通道残差卷积神经网络来提取深层的低水平特征,确保了稳健的跨域诊断能力。我们的模型进一步采用了局部子空间嵌入技术,有效地在嵌入空间内对齐语义特征。全面的实验评估表明,我们的 CDZSL 方法在诊断各种 HVCB 类型的故障方面表现出色。