Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey.
Faculty of Medicine, Department of Medicinal Genetics, Kafkas University, 36000, Kars, Turkey.
Environ Sci Pollut Res Int. 2024 Oct;31(49):59521-59532. doi: 10.1007/s11356-024-35185-7. Epub 2024 Oct 2.
This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 μg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl, 60 μM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, HO content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 μg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al stresses, thereby increasing the seedlings' adaptability to these stresses.
本研究通过研究各种形态生理化学参数和基因表达,探讨了鞣花酸(EA)减轻玉米干旱和铝(Al)胁迫影响的潜力。玉米(Zea mays L.)是一种重要的全球粮食来源,但它的生长和生产力受到干旱和铝(Al)胁迫的严重阻碍,导致根系发育受损、活性氧(ROS)水平升高、光合作用效率降低以及水和矿物质吸收减少。最近,鞣花酸(EA)作为一种具有强大抗氧化特性的多酚化合物,因其在调节植物生长和增强应激耐受机制方面的作用而受到关注。然而,EA 如何促进植物对 Al 和/或干旱的耐受的具体机制在很大程度上仍然未知。本研究旨在研究 100μg/mL EA 在一些形态生理化学参数和一些与应激相关基因(ZmCPK22、ZmXTH1、ZmHIPP4、ZmSGR、ZmpsbA、ZmAPX1 和 ZmGST1)表达谱中的防御作用,在在营养溶液中生长的玉米 Ada 523 中受到干旱(聚乙二醇-6000(PEG-6000),-0.6 MPa)和氯化铝(AlCl,60 μM)胁迫。我们的结果表明,干旱和氯化铝胁迫影响了玉米的根长、茎高、HO 含量、叶绿素含量(SPAD)、电解质泄漏(EL)和相对水含量(RWC),这些参数上下波动较大。相反,100μg/mL EA 处理对这些参数有缓解作用。此外,EA 还缓解了抗氧化酶活性(超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)),并调节了上述基因的表达。这些发现表明,EA 处理可以有效地改善干旱和/或 Al 胁迫下的基因表达和形态生理化学参数,从而提高幼苗对这些胁迫的适应能力。