Suppr超能文献

使用不同统计方法改进心血管试验中认知结果的分析。

Improving analysis of cognitive outcomes in cardiovascular trials using different statistical approaches.

作者信息

Lee Shun Fu, Whiteley William, Bosch Jackie, Sherlock Laura, Cukierman-Yaffe Tali, O'Donnell Martin, Eikelboom John W, Gerstein Hertzel C, Bangdiwala Shrikant I, Muniz-Terrera Graciela

机构信息

Population Health Research Institute, McMaster University, Hamilton, ON, Canada.

Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

出版信息

Trials. 2024 Oct 2;25(1):644. doi: 10.1186/s13063-024-08482-2.

Abstract

BACKGROUND

The Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) questionnaires are commonly used to measure global cognition in clinical trials. Because these scales are discrete and bounded with ceiling and floor effects and highly skewed, their analysis as continuous outcomes presents challenges. Normality assumptions of linear regression models are usually violated, which may result in failure to detect associations with variables of interest.

METHODS

Alternative approaches to analyzing the results of these cognitive batteries include transformations (standardization, square root, or log transformation) of the scores in the multivariate linear regression (MLR) model, the use of nonlinear beta-binomial regression (which is not dependent on the assumption of normality), or Tobit regression, which adds a latent variable to account for bounded data. We aim to empirically compare the model performance of all proposed approaches using four large randomized controlled trials (ORIGIN, TRANSCEND, COMPASS, and NAVIGATE-ESUS), and using as metrics the Akaike information criterion (AIC). We also compared the treatment effects for the methods that have the same unit of measure (i.e., untransformed MLR, beta-binomial, and Tobit).

RESULTS

The beta-binomial consistently demonstrated superior model performance, with the lowest AIC values among nearly all the approaches considered, followed by the MLR with square root and log transformations across all four studies. Notably, in ORIGIN, a substantial AIC reduction was observed when comparing the untransformed MLR to the beta-binomial, whereas other studies had relatively small AIC reductions. The beta-binomial model also resulted in a significant treatment effect in ORIGIN, while the untransformed MLR and Tobit regression showed no significance. The other three studies had similar and insignificant treatment effects among the three approaches.

CONCLUSION

When analyzing discrete and bounded outcomes, such as cognitive scores, as continuous variables, a beta-binomial regression model improves model performance, avoids spurious significance, and allows for a direct interpretation of the actual cognitive measure.

TRIALS REGISTRATION

ORIGIN (NCT00069784). Registered on October 1, 2003; TRANSCEND (NCT00153101). Registered on September 9, 2005; COMPASS (NCT01776424). Registered on January 24, 2013; NAVIGATE-ESUS (NCT02313909). Registered on December 8, 2014.

摘要

背景

简易精神状态检查表(MMSE)和蒙特利尔认知评估量表(MoCA)常用于临床试验中的整体认知测量。由于这些量表是离散的,存在天花板效应和地板效应,且严重偏态,将其作为连续结果进行分析存在挑战。线性回归模型的正态性假设通常会被违反,这可能导致无法检测到与感兴趣变量的关联。

方法

分析这些认知测试结果的替代方法包括对多元线性回归(MLR)模型中的分数进行变换(标准化、平方根变换或对数变换),使用非线性贝塔二项式回归(不依赖于正态性假设),或使用托比特回归,它添加了一个潜在变量来处理有界数据。我们旨在通过四项大型随机对照试验(ORIGIN、TRANSCEND、COMPASS和NAVIGATE - ESUS),以赤池信息准则(AIC)为指标,实证比较所有提出的方法的模型性能。我们还比较了具有相同测量单位的方法(即未变换的MLR、贝塔二项式和托比特)的治疗效果。

结果

贝塔二项式始终表现出卓越的模型性能,在几乎所有考虑的方法中AIC值最低,其次是在所有四项研究中进行平方根变换和对数变换的MLR。值得注意的是,在ORIGIN研究中,将未变换的MLR与贝塔二项式进行比较时,观察到AIC有显著降低,而其他研究的AIC降低相对较小。贝塔二项式模型在ORIGIN研究中也产生了显著的治疗效果,而未变换的MLR和托比特回归则无显著性。在其他三项研究中,这三种方法的治疗效果相似且无显著性。

结论

在将离散且有界的结果(如认知分数)作为连续变量进行分析时,贝塔二项式回归模型可提高模型性能,避免虚假显著性,并允许对实际认知测量进行直接解释。

试验注册

ORIGIN(NCT00069784)。于2003年10月1日注册;TRANSCEND(NCT00153101)。于2005年9月9日注册;COMPASS(NCT01776424)。于2013年1月24日注册;NAVIGATE - ESUS(NCT02313909)。于2014年12月8日注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42b/11446089/6356655df06b/13063_2024_8482_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验