Wang Wei, Griswold Michael E
Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS, USA.
Stat Methods Med Res. 2017 Dec;26(6):2622-2632. doi: 10.1177/0962280215602716. Epub 2015 Sep 1.
The Tobit model, also known as a censored regression model to account for left- and/or right-censoring in the dependent variable, has been used in many areas of applications, including dental health, medical research and economics. The reported Tobit model coefficient allows estimation and inference of an exposure effect on the latent dependent variable. However, this model does not directly provide overall exposure effects estimation on the original outcome scale. We propose a direct-marginalization approach using a reparameterized link function to model exposure and covariate effects directly on the truncated dependent variable mean. We also discuss an alternative average-predicted-value, post-estimation approach which uses model-predicted values for each person in a designated reference group under different exposure statuses to estimate covariate-adjusted overall exposure effects. Simulation studies were conducted to show the unbiasedness and robustness properties for both approaches under various scenarios. Robustness appears to diminish when covariates with substantial effects are imbalanced between exposure groups; we outline an approach for model choice based on information criterion fit statistics. The methods are applied to the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort study to assess associations between obesity and cognitive function in the non-Hispanic white participants.
托比特模型,也称为删失回归模型,用于处理因变量中的左删失和/或右删失,已在许多应用领域中得到使用,包括口腔健康、医学研究和经济学。所报告的托比特模型系数允许对潜在因变量的暴露效应进行估计和推断。然而,该模型并不能直接在原始结果量表上提供总体暴露效应估计。我们提出了一种直接边缘化方法,使用重新参数化的链接函数直接对截断因变量均值的暴露和协变量效应进行建模。我们还讨论了一种替代的平均预测值、估计后方法,该方法使用不同暴露状态下指定参考组中每个人的模型预测值来估计协变量调整后的总体暴露效应。进行了模拟研究,以展示两种方法在各种情况下的无偏性和稳健性。当具有实质性效应的协变量在暴露组之间不平衡时,稳健性似乎会降低;我们概述了一种基于信息准则拟合统计量的模型选择方法。这些方法应用于动脉病遗传流行病学网络(GENOA)队列研究,以评估非西班牙裔白人参与者中肥胖与认知功能之间的关联。