Suppr超能文献

耳机背后:呼叫中心患者报告的语音症状结局指标的预测准确性

Behind the Headset: Predictive Accuracy of Patient-Reported Outcome Measures for Voice Symptoms in Call Centers.

作者信息

Castillo-Allendes Adrián, Cantor-Cutiva Lady Catherine, Fuentes-López Eduardo, Hunter Eric J

机构信息

Department of Communicative Sciences and Disorders; Michigan State University; East Lansing; Michigan; United States.

Department of Communication Sciences and Disorders; The University of Iowa; Iowa City; United States.

出版信息

Rev Investig Innov Cienc Salud. 2024;6(1):44-72. doi: 10.46634/riics.240.

Abstract

OBJECTIVE

This study examines factors predicting self-reported voice symptoms in call center workers.

METHODS

Multivariate analysis and predictive modeling assess personal, work-related, acoustic, and behavioral factors. Generalized Linear Models (GLMs) and Receiver Operating Characteristic (ROC) curves are employed.

RESULTS

Age and sleep patterns impacted voice quality and effort, while workplace factors influenced symptom perception. Unhealthy vocal behaviors related to tense voice and increased effort, while hydration was protective. Voice acoustics showed diagnostic potential, supported by ROC data. These findings emphasize voice symptom complexity in call center professionals, necessitating comprehensive assessment.

LIMITATIONS

This study recognizes its limitations, including a moderate-sized convenience sample and reliance on PROM metrics. Future research should incorporate more objective measures in addition to self-reports and acoustic analysis.

VALUE

This research provides novel insights into the interplay of personal, occupational, and voice-related factors in developing voice symptoms among call center workers. Predictive modeling enhances risk assessment and understanding of individual susceptibility to voice disorders.

CONCLUSION

Results show associations between various factors and self-reported voice symptoms. Protective factors include sleeping more than six hours and consistent hydration, whereas risk factors include working conditions, such as location and behaviors like smoking. Diagnostic models indicate good accuracy for some voice symptom PROMs, emphasizing the need for comprehensive models considering work factors, vocal behaviors, and acoustic parameters to understand voice issues complexity.

摘要

目的

本研究探讨呼叫中心工作人员自我报告的嗓音症状的预测因素。

方法

多变量分析和预测模型评估个人、工作相关、声学和行为因素。采用广义线性模型(GLMs)和受试者工作特征(ROC)曲线。

结果

年龄和睡眠模式影响嗓音质量和用力程度,而工作场所因素影响症状感知。与嗓音紧张和用力增加相关的不健康发声行为,而水分摄入具有保护作用。嗓音声学显示出诊断潜力,ROC数据支持这一点。这些发现强调了呼叫中心专业人员嗓音症状的复杂性,需要进行全面评估。

局限性

本研究认识到其局限性,包括样本量适中且为便利样本以及依赖患者报告结局(PROM)指标。未来的研究除了自我报告和声学分析外,还应纳入更多客观测量方法。

价值

本研究为呼叫中心工作人员嗓音症状发生过程中个人、职业和嗓音相关因素之间的相互作用提供了新的见解。预测模型增强了风险评估以及对个体嗓音障碍易感性的理解。

结论

结果显示了各种因素与自我报告的嗓音症状之间的关联。保护因素包括睡眠超过6小时和持续补水,而风险因素包括工作条件,如工作地点以及吸烟等行为。诊断模型表明某些嗓音症状PROM具有良好的准确性,强调需要综合考虑工作因素、发声行为和声学参数的模型来理解嗓音问题的复杂性。

相似文献

本文引用的文献

1
Voice Disorder Classifications: A Scoping Review - Part A.嗓音障碍分类:一项范围综述 - A部分
J Voice. 2025 May;39(3):676-684. doi: 10.1016/j.jvoice.2022.11.016. Epub 2022 Dec 5.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验