Li Mengjie, Fu Shengli, Du Jingjing, Han Xiaoyu, Duan Chongfeng, Ren Yande, Qiao Yaqian, Tang Yueshan
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Department of Radiology, Shizuishan First People's Hospital, Shizuishan, China.
Front Oncol. 2024 Sep 18;14:1399270. doi: 10.3389/fonc.2024.1399270. eCollection 2024.
This study evaluates the efficacy of radiomics-based machine learning methodologies in differentiating solitary fibrous tumor (SFT) from angiomatous meningioma (AM).
A retrospective analysis was conducted on 171 pathologically confirmed cases (94 SFT and 77 AM) spanning from January 2009 to September 2020 across four institutions. The study comprised a training set (n=137) and a validation set (n=34). All patients underwent contrast-enhanced T1-weighted (CE-T1WI) and T2-weighted(T2WI) MRI scans, from which 1166 radiomics features were extracted. Subsequently, seventeen features were selected through minimum redundancy maximum relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO). Multivariate logistic regression analysis was employed to assess the independence of these features as predictors. A clinical model, established via both univariate and multivariate logistic regression based on MRI morphological features, was integrated with the optimal radiomics model to formulate a radiomics nomogram. The performance of the models was assessed utilizing the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV).
The radiomics nomogram demonstrated exceptional discriminative performance in the validation set, achieving an AUC of 0.989. This outperformance was evident when compared to both the radiomics algorithm (AUC= 0.968) and the clinical model (AUC = 0.911) in the same validation sets. Notably, the radiomics nomogram exhibited impressive values for ACC, SEN, and SPE at 97.1%, 93.3%, and 100%, respectively, in the validation set.
The machine learning-based radiomic nomogram proves to be highly effective in distinguishing between SFT and AM.
本研究评估基于放射组学的机器学习方法在鉴别孤立性纤维瘤(SFT)和血管瘤型脑膜瘤(AM)中的疗效。
对2009年1月至2020年9月期间四个机构的171例经病理证实的病例(94例SFT和77例AM)进行回顾性分析。该研究包括一个训练集(n = 137)和一个验证集(n = 34)。所有患者均接受了对比增强T1加权(CE-T1WI)和T2加权(T2WI)MRI扫描,从中提取了1166个放射组学特征。随后,通过最小冗余最大相关性(mRMR)和最小绝对收缩和选择算子(LASSO)选择了17个特征。采用多变量逻辑回归分析来评估这些特征作为预测因子的独立性。基于MRI形态学特征通过单变量和多变量逻辑回归建立的临床模型与最佳放射组学模型相结合,以制定放射组学列线图。利用受试者操作特征曲线下面积(AUC)、准确性(ACC)、敏感性(SEN)、特异性(SPE)、阳性预测值(PPV)和阴性预测值(NPV)评估模型的性能。
放射组学列线图在验证集中表现出卓越的鉴别性能,AUC为0.989。与同一验证集中的放射组学算法(AUC = 0.968)和临床模型(AUC = 0.911)相比,这种优势很明显。值得注意的是,放射组学列线图在验证集中的ACC、SEN和SPE值分别令人印象深刻,为97.1%、93.3%和100%。
基于机器学习的放射组学列线图在区分SFT和AM方面被证明是非常有效的。