Suppr超能文献

基于多参数磁共振成像的影像组学列线图用于鉴别原发性黏液性卵巢癌与转移性卵巢癌

Multiparametric MRI-based radiomics nomogram for differentiation of primary mucinous ovarian cancer from metastatic ovarian cancer.

作者信息

Shi Shu Yi, Li Yong Ai, Qiang Jin Wei

机构信息

Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.

Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

Abdom Radiol (NY). 2025 Feb;50(2):1018-1028. doi: 10.1007/s00261-024-04542-y. Epub 2024 Aug 31.

Abstract

OBJECTIVE

To develop a multiparametric magnetic resonance imaging (mpMRI)-based radiomics nomogram and evaluate its performance in differentiating primary mucinous ovarian cancer (PMOC) from metastatic ovarian cancer (MOC).

METHODS

A total of 194 patients with PMOC (n = 72) and MOC (n = 122) confirmed by histology were randomly divided into the primary cohort (n = 137) and validation cohort (n = 57). Radiomics features were extracted from axial fat-saturated T2-weighted imaging (FS-T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences of each lesion. The effective features were selected by minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression to develop a radiomics model. Combined with clinical features, multivariate logistic regression analysis was employed to develop a radiomics nomogram. The efficiency of nomogram was evaluated using the receiver operating characteristic (ROC) curve analysis and compared using DeLong test. Finally, the goodness of fit and clinical benefit of nomogram were assessed by calibration curves and decision curve analysis, respectively.

RESULTS

The radiomics nomogram, by combining the mpMRI radiomics features with clinical features, yielded area under the curve (AUC) values of 0.931 and 0.934 in the primary and validation cohorts, respectively. The predictive performance of the radiomics nomogram was significantly superior to the radiomics model (0.931 vs. 0.870, P = 0.004; 0.934 vs. 0.844, P = 0.032), the clinical model (0.931 vs. 0.858, P = 0.005; 0.934 vs. 0.847, P = 0.030), and radiologists (all P < 0.05) in the primary and validation cohorts, respectively. The decision curve analysis revealed that the nomogram could provide higher net benefit to patients.

CONCLUSION

The mpMRI-based radiomics nomogram exhibited notable predictive performance in differentiating PMOC from MOC, emerging as a non-invasive preoperative imaging approach.

摘要

目的

建立基于多参数磁共振成像(mpMRI)的影像组学列线图,并评估其在鉴别原发性黏液性卵巢癌(PMOC)与转移性卵巢癌(MOC)中的性能。

方法

选取194例经组织学确诊的PMOC患者(n = 72)和MOC患者(n = 122),随机分为训练队列(n = 137)和验证队列(n = 57)。从每个病灶的轴位脂肪抑制T2加权成像(FS-T2WI)、扩散加权成像(DWI)和对比增强T1加权成像(CE-T1WI)序列中提取影像组学特征。通过最小冗余最大相关性(mRMR)和最小绝对收缩和选择算子(LASSO)回归选择有效特征,以建立影像组学模型。结合临床特征,采用多因素逻辑回归分析建立影像组学列线图。使用受试者工作特征(ROC)曲线分析评估列线图的效能,并采用DeLong检验进行比较。最后,分别通过校准曲线和决策曲线分析评估列线图的拟合优度和临床获益。

结果

影像组学列线图结合mpMRI影像组学特征和临床特征,在训练队列和验证队列中的曲线下面积(AUC)值分别为0.931和0.934。影像组学列线图的预测性能显著优于影像组学模型(0.931比0.870,P = 0.004;0.934比0.844,P = 0.032)、临床模型(0.931比0.858,P = 0.005;0.934比0.847,P = 0.030)以及放射科医生的诊断效能(所有P < 0.05),在训练队列和验证队列中均如此。决策曲线分析表明,列线图可为患者提供更高的净获益。

结论

基于mpMRI的影像组学列线图在鉴别PMOC与MOC方面表现出显著的预测性能,成为一种非侵入性的术前影像检查方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验