Ziev Tracey, Rasouli Erfan, Tano Ines-Noelly, Wu Ziheng, Rao Yarasi Srujana, Lamprinakos Nicholas, Seo Junwon, Narayanan Vinod, Rollett Anthony D, Vaishnav Parth
Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, California, USA.
3D Print Addit Manuf. 2024 Jun 18;11(3):e1108-e1118. doi: 10.1089/3dp.2022.0188. eCollection 2024 Jun.
Advances in manufacturing technologies and materials are crucial to the commercial deployment of energy technologies. We present the case of concentrating solar power (CSP) with molten salt (MS) thermal storage, where low-cost, high-efficiency heat exchangers (HXs) are needed to achieve cost competitiveness. The materials required to tolerate the extreme operating conditions in CSP systems make it difficult or infeasible to produce them using conventional manufacturing processes. Although it is technically possible to produce HXs with adequate performance using additive manufacturing, specifically laser powder bed fusion (LPBF), here we assess whether doing so is cost-effective. We describe a process-based cost model (PBCM) to estimate the cost of fabricating a MS-to-supercritical carbon dioxide HX using LPBF. The PBCM is designed to identify modifications to designs, process choices, and manufacturing innovations that have the greatest effect on manufacturing cost. Our PBCM identified HX design and LPBF process modifications that reduced projected HX cost from $750 per kilo-Watt thermal (kW-th) ($8/cm) to $350/kW-th ($6/cm) using currently available LPBF technology, and down to $220/kW-th ($4/cm) with improvements in LPBF technology that are likely to be achieved in the near term. The PBCM also informed a redesign of the HX design that reduced projected costs to $140-160/kW-th ($3/cm).
制造技术和材料的进步对于能源技术的商业应用至关重要。我们以熔盐储热的聚光太阳能热发电(CSP)为例,在这种情况下,需要低成本、高效率的热交换器(HX)来实现成本竞争力。CSP系统中耐受极端运行条件所需的材料使得使用传统制造工艺生产这些材料变得困难或不可行。虽然从技术上讲,使用增材制造,特别是激光粉末床熔融(LPBF)来生产具有足够性能的HX是可行的,但在这里我们评估这样做是否具有成本效益。我们描述了一种基于工艺的成本模型(PBCM),以估算使用LPBF制造一个熔盐到超临界二氧化碳HX的成本。PBCM旨在识别对设计、工艺选择和制造创新的修改,这些修改对制造成本影响最大。我们的PBCM识别出了HX设计和LPBF工艺的修改,使用当前可用的LPBF技术,可将预计的HX成本从每千瓦热功率750美元(8美元/平方厘米)降至350美元/千瓦热功率(6美元/平方厘米),并且随着近期可能实现的LPBF技术改进,成本可降至220美元/千瓦热功率(4美元/平方厘米)。PBCM还为HX设计的重新设计提供了依据,使预计成本降至140 - 160美元/千瓦热功率(3美元/平方厘米)。