Suppr超能文献

通过 MAGFlow 和 BigMAG 的集成实现宏基因组质量指标和分类注释可视化。

Metagenome quality metrics and taxonomical annotation visualization through the integration of MAGFlow and BIgMAG.

机构信息

Swiss Institute of Bioinformatics, Lausanne, Vaud, 1015, Switzerland.

Department of Biology, University of Fribourg, Fribourg, Canton of Fribourg, 1700, Switzerland.

出版信息

F1000Res. 2024 Sep 23;13:640. doi: 10.12688/f1000research.152290.2. eCollection 2024.

Abstract

BACKGROUND

Building Metagenome-Assembled Genomes (MAGs) from highly complex metagenomics datasets encompasses a series of steps covering from cleaning the sequences, assembling them to finally group them into bins. Along the process, multiple tools aimed to assess the quality and integrity of each MAG are implemented. Nonetheless, even when incorporated within end-to-end pipelines, the outputs of these pieces of software must be visualized and analyzed manually lacking integration in a complete framework.

METHODS

We developed a Nextflow pipeline (MAGFlow) for estimating the quality of MAGs through a wide variety of approaches (BUSCO, CheckM2, GUNC and QUAST), as well as for annotating taxonomically the metagenomes using GTDB-Tk2. MAGFlow is coupled to a Python-Dash application (BIgMAG) that displays the concatenated outcomes from the tools included by MAGFlow, highlighting the most important metrics in a single interactive environment along with a comparison/clustering of the input data.

RESULTS

By using MAGFlow/BIgMAG, the user will be able to benchmark the MAGs obtained through different workflows or establish the quality of the MAGs belonging to different samples following methodology.

CONCLUSIONS

MAGFlow/BIgMAG represents a unique tool that integrates state-of-the-art tools to study different quality metrics and extract visually as much information as possible from a wide range of genome features.

摘要

背景

从高度复杂的宏基因组学数据集中构建宏基因组组装基因组(MAG)涵盖了一系列步骤,包括从清理序列、组装它们到最终将它们分组到 bin 中。在这个过程中,实施了多个旨在评估每个 MAG 质量和完整性的工具。尽管如此,即使在端到端管道中包含这些软件的输出,也必须手动可视化和分析,缺乏完整框架的集成。

方法

我们开发了一个 Nextflow 管道(MAGFlow),通过多种方法(BUSCO、CheckM2、GUNC 和 QUAST)来估计 MAG 的质量,以及使用 GTDB-Tk2 对宏基因组进行分类学注释。MAGFlow 与一个 Python-Dash 应用程序(BIgMAG)耦合,该应用程序显示了 MAGFlow 中包含的工具的串联结果,在单个交互环境中突出显示最重要的指标,并对输入数据进行比较/聚类。

结果

通过使用 MAGFlow/BIgMAG,用户将能够通过不同的工作流程对获得的 MAG 进行基准测试,或者按照方法对属于不同样本的 MAG 的质量进行评估。

结论

MAGFlow/BIgMAG 是一个独特的工具,它集成了最先进的工具来研究不同的质量指标,并从各种基因组特征中提取尽可能多的可视化信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3045/11445646/51ee1ed8ab67/f1000research-13-171258-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验