Suppr超能文献

基于 ROI 骨折预测的肘部 X 射线图像的 YOLOv8 和 ResNet、SeResNet 和 Vision Transformer(ViT)算法的综合方法。

An Integrated Approach using YOLOv8 and ResNet, SeResNet & Vision Transformer (ViT) Algorithms based on ROI Fracture Prediction in X-ray Images of the Elbow.

机构信息

Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan.

Department of Medical Imaging Chang Bing Show Chwan Memorial Hospital Diagnostic Radiology Specialist, Taiwan.

出版信息

Curr Med Imaging. 2024;20:e15734056309890. doi: 10.2174/0115734056309890240912054616.

Abstract

INTRODUCTION

In this study, we harnessed three cutting-edge algorithms' capabilities to refine the elbow fracture prediction process through X-ray image analysis. Employing the YOLOv8 (You only look once) algorithm, we first identified Regions of Interest (ROI) within the X-ray images, significantly augmenting fracture prediction accuracy.

METHODS

Subsequently, we integrated and compared the ResNet, the SeResNet (Squeeze-and-Excitation Residual Network) ViT (Vision Transformer) algorithms to refine our predictive capabilities. Furthermore, to ensure optimal precision, we implemented a series of meticulous refinements. This included recalibrating ROI regions to enable finer-grained identification of diagnostically significant areas within the X-ray images. Additionally, advanced image enhancement techniques were applied to optimize the X-ray images' visual quality and structural clarity.

RESULTS

These methodological enhancements synergistically contributed to a substantial improvement in the overall accuracy of our fracture predictions. The dataset utilized for training, testing & validation, and comprehensive evaluation exclusively comprised elbow X-ray images, where predicting the fracture with three algorithms: Resnet50; accuracy 0.97, precision 1, recall 0.95, SeResnet50; accuracy 0.97, precision 1, recall 0.95 & ViTB- 16 with high accuracy of 0.99, precision same as the other two algorithms, with a recall of 0.95.

CONCLUSION

This approach has the potential to increase the precision of diagnoses, lessen the burden of radiologists, easily integrate into current medical imaging systems, and assist clinical decision-making, all of which could lead to better patient care and health outcomes overall.

摘要

简介

在这项研究中,我们利用三种先进的算法,通过 X 射线图像分析,提高肘部骨折预测过程的准确性。首先,我们使用 YOLOv8(只看一次)算法识别 X 射线图像中的感兴趣区域(ROI),显著提高了骨折预测的准确性。

方法

然后,我们整合并比较了 ResNet、SeResNet(挤压激励残差网络)和 ViT(视觉转换器)算法,以提高我们的预测能力。此外,为了确保最佳的精度,我们还进行了一系列细致的改进。这包括重新校准 ROI 区域,以便更精细地识别 X 射线图像中具有诊断意义的区域。此外,还应用了先进的图像增强技术,以优化 X 射线图像的视觉质量和结构清晰度。

结果

这些方法学上的改进协同作用,极大地提高了我们骨折预测的整体准确性。我们的训练、测试和验证数据集以及全面评估仅包括肘部 X 射线图像,在这些图像中,使用三种算法预测骨折:Resnet50;准确性为 0.97,精度为 1,召回率为 0.95,SeResnet50;准确性为 0.97,精度为 1,召回率为 0.95,以及 ViTB-16 具有高达 0.99 的高精度,精度与其他两种算法相同,召回率为 0.95。

结论

这种方法有可能提高诊断的准确性,减轻放射科医生的负担,方便地集成到现有的医学成像系统中,并辅助临床决策,从而提高整体患者护理和健康结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验