Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina.
Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Lasers Surg Med. 2024 Nov;56(9):783-795. doi: 10.1002/lsm.23847. Epub 2024 Oct 3.
Photodynamic inactivation (PDI) is a powerful technique for eradicating microorganisms, and our group previously demonstrated its effectiveness against planktonic cultures of Staphylococcus aureus bacteria using 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and visible light irradiation. However, biofilms exhibit a lower sensitivity to PDI, mainly due to limited penetration of the photosensitizer (PS). In the context of emerging antibacterial strategies, near-infrared treatments (NIRTs) have shown promise, especially for combating resistant strains. NIRT can act either through photon absorption by water, causing a thermal effect on bacteria, or by specific chromophores without a significant temperature increase. Our objective was to enhance biofilm sensitivity to TAPP-PDI by pretreatment with NIRT. This combined approach aims to disrupt biofilms and increase the efficacy of TAPP-PDI against bacterial biofilms.
In vitro biofilm models of S. aureus RN6390 were utilized. NIRTs involved a 980 nm laser (continuous mode, 7.5 W/cm, 30 s, totaling 225 J/cm) post-TAPP exposure to enhance photosensitizer accumulation. Subsequent visible light irradiation at 180 J/cm was employed to perform PDI. Colony-forming unit counts evaluated the synergistic effect on bacterial viability. Scanning electron microscopy visualized the architectural changes in the biofilm structure. TAPP was extracted from bacteria to estimate the impact of NIRT on biofilm penetration.
Using in vitro biofilm models, NIRT application following biofilm exposure to TAPP increased PS accumulation per bacteria. Under these conditions, NIRT induced a transient increase in the temperature of PBS to 46.0 ± 2.6°C (ΔT = 21.5°C). Following exposure to visible light, a synergistic effect emerged, yielding a substantial 4.4 ± 0.1-log CFU reduction. In contrast, the PDI and NIRT treatments individually caused a decrease in viability of 0.9 ± 0.1 and 0.8 ± 0.2-log respectively. Interestingly, preheating TAPP-PBS to 46°C had no significant impact on TAPP-PDI efficacy, suggesting the involvement of thermal and nonthermal effects of NIR action. In addition to the enhanced TAPP penetration, NIRT dispersed the biofilms and induced clefts in the biofilm matrix.
Our findings suggest that NIR irradiation serves as a complementary treatment to PDI. This combined strategy reduces bacterial numbers at lower PS concentrations than standalone PDI treatment, highlighting its potential as an effective and resource-efficient antibacterial approach.
光动力失活(PDI)是一种强大的杀灭微生物技术,我们之前的研究表明,使用 5,10,15,20-四[4-(3-N,N-二甲氨基丙氧基)苯基]卟啉(TAPP)和可见光照射,可以有效杀灭金黄色葡萄球菌浮游培养物。然而,生物膜对 PDI 的敏感性较低,主要是由于光敏剂(PS)的穿透有限。在新兴的抗菌策略背景下,近红外治疗(NIRT)显示出了潜力,特别是在对抗耐药菌株方面。NIRT 可以通过水的光子吸收来发挥作用,从而对细菌产生热效应,或者通过特定的生色团发挥作用,而不会导致明显的温度升高。我们的目标是通过 NIRT 预处理来提高 TAPP-PDI 对生物膜的敏感性。这种联合方法旨在破坏生物膜并提高 TAPP-PDI 对细菌生物膜的疗效。
我们使用了金黄色葡萄球菌 RN6390 的体外生物膜模型。NIRT 涉及 980nm 激光(连续模式,7.5W/cm,30s,总能量 225J/cm),在 TAPP 暴露后进行,以增强光敏剂的积累。随后,使用 180J/cm 的可见光进行 PDI。平板计数法评估对细菌活力的协同作用。扫描电子显微镜观察生物膜结构的形态变化。从细菌中提取 TAPP 以估计 NIRT 对生物膜穿透的影响。
在体外生物膜模型中,在 TAPP 暴露后对生物膜进行 NIRT 处理可增加每个细菌的 PS 积累。在这些条件下,NIRT 使 PBS 的温度短暂升高至 46.0±2.6°C(ΔT=21.5°C)。随后暴露于可见光下,出现协同作用,导致细菌数量显著减少 4.4±0.1-log CFU。相比之下,PDI 和 NIRT 处理单独使活力降低 0.9±0.1 和 0.8±0.2-log。有趣的是,将 TAPP-PBS 预加热至 46°C 对 TAPP-PDI 的疗效没有显著影响,这表明 NIR 作用既有热效应又有非热效应。除了增强 TAPP 的穿透性外,NIRT 还能分散生物膜并在生物膜基质中诱导裂缝。
我们的研究结果表明,近红外辐射可作为 PDI 的辅助治疗手段。与单独的 PDI 处理相比,这种联合策略可以在较低 PS 浓度下减少细菌数量,突出了其作为一种有效且节约资源的抗菌方法的潜力。