Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China.
Environ Sci Technol. 2024 Oct 15;58(41):18391-18403. doi: 10.1021/acs.est.4c08677. Epub 2024 Oct 3.
Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.
土壤中铁(Fe)(oxyhr)氧化物、Fe(II)、有机物(OM)和微生物介导的铬(Cr)转化在很大程度上尚未得到探索。在这里,我们在缺氧培养实验中研究了来自中国热带和亚热带地区的四个 Cr(VI) 污染土壤样品中这些过程的耦合及其机制。实验表明,易氧化有机碳(EOC,55-84%)和微生物(16-48%)在富含针铁矿和/或赤铁矿的土壤中驱动 Cr(VI) 的还原,其中旱地土壤中的微生物硫酸盐还原可能也参与其中。相比之下,EOC(38 ± 1%)、微生物(33 ± 1%)以及可交换和非晶态 Fe(oxyhr)氧化物结合的 Fe(II)(29 ± 3%)有助于富含水铁矿的稻田土壤中 Cr(VI) 的还原。此外,外加 Fe(II)和微生物显著促进了富水铁矿和针铁矿土壤中 Cr(VI)的还原,而 Fe(II)大大促进但微生物略微抑制了 Cr 的钝化。Fe(II)和微生物,特别是后者,促进了 OM 的矿化,导致富水铁矿稻田土壤中 OM 损失最大。在培养过程中,部分水铁矿转化为针铁矿,但微生物可能会阻碍这种转化。这些结果深入了解了在自然和工程环境中,Fe、OM 和微生物的复杂影响对氧化还原敏感重金属的地球化学命运的影响。