Ghosh Avijit, Buian Mohammad Fokhrul Islam, Dey Nondon Lal, Ria Most Sadia Islam, Baki Abdullah Al, Miazee Asif Ahammad, Awwad Nasser S, Robin Rabiul Islam Chowdhury, A Ibrahium Hala
Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur 5400, Bangladesh.
Department of Mechanical Engineering, Lamar University, Texas, USA.
Phys Chem Chem Phys. 2024 Oct 17;26(40):25890-25909. doi: 10.1039/d4cp03286a.
In comparison to the lead halide perovskites, nowadays, lead-free halide perovskites have demonstrated a number of benefits, including efficient optical absorption, increased stability, variable bandgap, excellent mobility of carriers, non-toxicity, abundant raw ingredients, and low manufacturing cost. The use of the Perdew-Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional inside the quantum espresso software allowed for a thorough examination of these materials, potentially leading to improvements in the development of ecologically acceptable and economically sustainable perovskite-based products. This work has extensively examined the effects of compressive and tensile strain on the structural, optical, and electronic characteristics of the inorganic cubic perovskite SrAsX (X = F, Cl, Br) with varying X anion using first-principles density-functional theory (FP-DFT). At the point, the unstrained SrAsF, SrAsCl, and SrAsBr compounds have a direct bandgap of 1.68/2.50 eV, 1.65/2.47 eV, and 1.522/2.30 eV, respectively, from the PBE/HSE methods. A drop in bandgap values occurs when the X-anion switches from F to Cl to Br. Furthermore, the bandgaps of the three proposed structures show a minor increase in response to tensile strain and a decreasing prevalence in response to compressive strain. The optical properties, which include dielectric functions, absorption coefficient, and electron loss function, are consistent with the band characteristics of these components, all of which point to a significant capability for absorption in the visible region. The dielectric constants of SrAsF, SrAsCl, and SrAsBr are discovered to have peaks that, with compressive strain, redshift (move towards lower photon energy) and, under tensile strain, blueshift (move towards upper photon energy). In comparison to the compounds SrAsF and SrAsCl, the parameters indicate that the material SrAsBr is more optically advantageous. The SCAPS-1D simulator was used to methodically examine the photovoltaic (PV) performance of novel cell topologies that included SnS as an electron transport layer (ETL) and SrAsF, SrAsCl, and SrAsBr as absorbers and primarily 19.76, 19.89, and 20.89% PCE was achieved, respectively.
与铅卤化物钙钛矿相比,如今无铅卤化物钙钛矿已展现出诸多优势,包括高效的光吸收、更高的稳定性、可变的带隙、优异的载流子迁移率、无毒、原料丰富以及制造成本低等。在量子 espresso 软件中使用佩德韦-伯克-恩泽霍夫(PBE)和海德-斯库塞里亚-恩泽霍夫(HSE)杂化泛函,使得对这些材料进行全面研究成为可能,这有望推动基于钙钛矿的生态可接受且经济可持续产品的开发取得进展。这项工作利用第一性原理密度泛函理论(FP-DFT),广泛研究了压缩应变和拉伸应变对具有不同 X 阴离子的无机立方钙钛矿 SrAsX(X = F、Cl、Br)的结构、光学和电子特性的影响。在该点上,从 PBE/HSE 方法来看,未受应变的 SrAsF、SrAsCl 和 SrAsBr 化合物的直接带隙分别为 1.68/2.50 eV、1.65/2.47 eV 和 1.522/2.30 eV。当 X 阴离子从 F 切换到 Cl 再到 Br 时,带隙值会下降。此外,所提出的三种结构的带隙在受到拉伸应变时略有增加,而在受到压缩应变时增加的趋势则减弱。包括介电函数、吸收系数和电子损失函数在内的光学性质与这些组分的能带特性一致,所有这些都表明在可见光区域具有显著的吸收能力。发现 SrAsF、SrAsCl 和 SrAsBr 的介电常数存在峰值,在压缩应变下会发生红移(向较低光子能量移动),而在拉伸应变下会发生蓝移(向较高光子能量移动)。与 SrAsF 和 SrAsCl 化合物相比,这些参数表明 SrAsBr 材料在光学方面更具优势。使用 SCAPS-1D 模拟器系统地研究了新型电池拓扑结构的光伏(PV)性能,这些拓扑结构包括以 SnS 作为电子传输层(ETL),以 SrAsF、SrAsCl 和 SrAsBr 作为吸收体,分别实现了主要为 19.76%、19.89%和 20.89%的光电转换效率(PCE)。