Suppr超能文献

炼金术的转化与超越:药物发现中自由能计算的最新进展和实际应用。

Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery.

机构信息

Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.

Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.

出版信息

J Chem Inf Model. 2024 Oct 14;64(19):7214-7237. doi: 10.1021/acs.jcim.4c01024. Epub 2024 Oct 3.

Abstract

Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.

摘要

计算方法是筛选和优化潜在药物分子的有效策略。在这个过程中,关键因素是候选分子与靶标的结合亲和力,用结合自由能来量化。在各种估计方法中,化学变换方法以其理论严谨性而脱颖而出。尽管在力场精度和采样效率方面存在挑战,但算法、软件和硬件的进步增加了自由能微扰(FEP)计算在制药行业中的应用。在这里,我们回顾了 2018 年以来 FEP 在药物发现项目中的实际应用,涵盖配体中心和残基中心变换。我们表明,相对结合自由能计算在实际应用中已稳步达到化学精度。此外,我们还讨论了替代基于物理的模拟方法以及将深度学习纳入自由能计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验