Suppr超能文献

评估AlphaFold 3用于蛋白质结构中全氟和多氟烷基物质对接的性能

Assessing AlphaFold 3 for Per- and Polyfluoroalkyl Substances Docking in Protein Structures.

作者信息

Gong Xiping, Zhou Hualu, Huang Qingguo

机构信息

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia 30223, United States.

Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia 30223, United States.

出版信息

Environ Sci Technol. 2025 Sep 9;59(35):18440-18449. doi: 10.1021/acs.est.5c03917. Epub 2025 Aug 26.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that may pose health risks due to strong protein interactions. While AlphaFold 3 (AF3) was recently introduced for protein-ligand modeling with high claimed accuracy, its reliability for docking PFAS remains unclear. This study evaluates AF3's performance in predicting protein-PFAS interactions using a curated data set from the Protein Data Bank, divided into a "Before Set" (seen during AF3 training) and an "After Set" (unseen). AF3 accurately predicts protein structures and pockets but shows reduced performance in pocket-aligned ligand predictions, achieving ∼74.5% success in "Before Set" but only ∼55.8% in "After Set", indicative of possible overfitting. We further assess the effects of PFAS type on docking outcomes. Although AF3 accurately predicts binding pockets, it favors poses where the headgroup of environment-relevant PFAS interacts with polar or positively charged residues. This is different from another native binding mode in several cases, where the hydrophobic tail is inserted in the protein, but the headgroup is exposed to the solvent. Notably, a hybrid approach combining AF3 and Vina, especially considering multiple top-ranked poses, can improve prediction accuracy. These findings support the complementary use of AF3 and Vina for accurately modeling protein-PFAS interactions.

摘要

全氟和多氟烷基物质(PFAS)是持久性环境污染物,由于其与蛋白质的强相互作用可能对健康构成风险。虽然最近推出的AlphaFold 3(AF3)在蛋白质-配体建模方面具有较高的声称准确性,但其对接PFAS的可靠性仍不明确。本研究使用来自蛋白质数据库的精选数据集评估AF3在预测蛋白质-PFAS相互作用方面的性能,该数据集分为“训练前集”(在AF3训练期间见过)和“训练后集”(未见过)。AF3能准确预测蛋白质结构和口袋,但在口袋对齐的配体预测方面性能有所下降,在“训练前集”中的成功率约为74.5%,而在“训练后集”中仅约为55.8%,表明可能存在过拟合。我们进一步评估了PFAS类型对对接结果的影响。虽然AF3能准确预测结合口袋,但它更倾向于与环境相关PFAS的头部基团与极性或带正电荷残基相互作用的构象。在几种情况下,这与另一种天然结合模式不同,在后者中疏水尾部插入蛋白质中,但头部基团暴露于溶剂中。值得注意的是,一种结合AF3和Vina的混合方法,特别是考虑多个排名靠前的构象,可以提高预测准确性。这些发现支持将AF3和Vina互补使用以准确模拟蛋白质-PFAS相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验