文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

格尔德霉素,一种天然存在的 HSP90 抑制剂,也是药物化学的先导化合物。

Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry.

机构信息

Department of Organic and Bioorganic Chemistry, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.

Datwyler Sealing Technologies CZ Ltd., Polní 224, 50401 Nový Bydžov, Czech Republic.

出版信息

J Med Chem. 2024 Oct 24;67(20):17946-17963. doi: 10.1021/acs.jmedchem.4c01048. Epub 2024 Oct 3.


DOI:10.1021/acs.jmedchem.4c01048
PMID:39361055
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11513894/
Abstract

Geldanamycin remains a driver in the medicinal chemistry of heat shock protein 90 (Hsp90) inhibition, even half a century after its original isolation from nature. This Perspective focuses on the properties of the benzoquinone ring of the natural product that enable a range of functionalization reactions to take place. Therefore, inherent reactivity at C-17, where the methoxy group serves as a vinylogous ester, and at C-19 that demonstrates nucleophilic, enamide-type character toward electrophiles, and also as a conjugate acceptor to react with nucleophiles, has facilitated the synthesis of semisynthetic derivatives. Thus, a range of C-17-substituted amine derivatives has been investigated in oncology applications, with a number of compounds in this series reaching clinical trials. In contrast, the 19-position of geldanamycin has received less attention, although 19-substituted derivatives offer promise with markedly reduced toxicity compared to geldanamycin itself, while retaining Hsp90 inhibitory activity albeit with diminished potency in cellular studies.

摘要

金奈霉素仍然是热休克蛋白 90(Hsp90)抑制的药物化学中的一个驱动因素,即使在其最初从自然界中分离出来半个世纪之后。本观点重点介绍了天然产物中苯醌环的特性,这些特性使一系列功能化反应得以发生。因此,C-17 位上的固有反应性,其中甲氧基作为乙烯基酯,以及 C-19 位上表现出亲核、烯酰胺型对亲电试剂的特征,以及作为共轭受体与亲核试剂反应,促进了半合成衍生物的合成。因此,已经研究了一系列 C-17 取代的胺衍生物在肿瘤学应用中的应用,该系列中的许多化合物已进入临床试验。相比之下,金奈霉素的 19 位受到的关注较少,尽管与金奈霉素本身相比,19 位取代的衍生物具有明显降低的毒性,同时保留了 Hsp90 抑制活性,尽管在细胞研究中效力降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/535f31f27aa1/jm4c01048_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/6fa37cf6bf0e/jm4c01048_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/4c23b2e4b75a/jm4c01048_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/a72db5c4d701/jm4c01048_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d1603eb8f6a9/jm4c01048_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/3e015298cb9b/jm4c01048_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/5a563bffe1f2/jm4c01048_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/018adea445a7/jm4c01048_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d0118a6c90f9/jm4c01048_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/57c597535e55/jm4c01048_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/371e678254e0/jm4c01048_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d0cb60bdf349/jm4c01048_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/16c8f8f93f5a/jm4c01048_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/eba75495f13e/jm4c01048_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/86bc2213be43/jm4c01048_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/12c601095362/jm4c01048_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d5865822d28d/jm4c01048_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/06aa7ffa0f08/jm4c01048_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/c0b80145d613/jm4c01048_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/2b4f3bd63648/jm4c01048_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/e0177b2bf144/jm4c01048_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/535f31f27aa1/jm4c01048_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/6fa37cf6bf0e/jm4c01048_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/4c23b2e4b75a/jm4c01048_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/a72db5c4d701/jm4c01048_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d1603eb8f6a9/jm4c01048_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/3e015298cb9b/jm4c01048_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/5a563bffe1f2/jm4c01048_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/018adea445a7/jm4c01048_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d0118a6c90f9/jm4c01048_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/57c597535e55/jm4c01048_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/371e678254e0/jm4c01048_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d0cb60bdf349/jm4c01048_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/16c8f8f93f5a/jm4c01048_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/eba75495f13e/jm4c01048_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/86bc2213be43/jm4c01048_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/12c601095362/jm4c01048_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/d5865822d28d/jm4c01048_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/06aa7ffa0f08/jm4c01048_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/c0b80145d613/jm4c01048_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/2b4f3bd63648/jm4c01048_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/e0177b2bf144/jm4c01048_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/11513894/535f31f27aa1/jm4c01048_0008.jpg

相似文献

[1]
Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry.

J Med Chem. 2024-10-24

[2]
An improved route to 19-substituted geldanamycins as novel Hsp90 inhibitors--potential therapeutics in cancer and neurodegeneration.

Chem Commun (Camb). 2013-10-4

[3]
Synthesis and anticancer activity of geldanamycin derivatives derived from biosynthetically generated metabolites.

Org Biomol Chem. 2008-1-21

[4]
Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy.

Nat Prod Rep. 2013-8-12

[5]
In vitro and in vivo Evaluation of 17-phenylpropylamine/phenoxyethylamine- 17-demethoxygeldanamycins as Potent Hsp90 Inhibitors.

Med Chem. 2015

[6]
Design, synthesis and biological evaluation of 17-arylmethylamine-17-demethoxygeldanamycin derivatives as potent Hsp90 inhibitors.

Eur J Med Chem. 2014-10-6

[7]
Discovery of diamine-linked 17-aroylamido-17-demethoxygeldanamycins as potent Hsp90 inhibitors.

Eur J Med Chem. 2014-9-28

[8]
Discovery and development of heat shock protein 90 inhibitors as anticancer agents: a review of patented potent geldanamycin derivatives.

Expert Opin Ther Pat. 2013-5-4

[9]
Conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin, for Hsp90 inhibitory activity.

Bioorg Med Chem Lett. 2008-3-1

[10]
Discovery of novel 17-phenylethylaminegeldanamycin derivatives as potent Hsp90 inhibitors.

Chem Biol Drug Des. 2015-2

引用本文的文献

[1]
Histone Methyltransferase SETD1B Maintains Cancer Stem Cell Niche by Regulating the Crosstalk between CD24 and Surface Adhesion Molecules in Hepatocellular Carcinoma.

Int J Biol Sci. 2025-7-24

[2]
Disrupting the Hsp90-Cdc37 axis: a selective strategy for targeting oncogenic kinases in cancer.

RSC Adv. 2025-6-9

[3]
Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida.

J Fungi (Basel). 2025-4-1

[4]
Nontargeted Metabolomics of Sourced from Thailand Reveals the Presence of Bioactive Metabolites.

ACS Omega. 2025-3-11

本文引用的文献

[1]
Small molecule inhibitors targeting heat shock protein 90: An updated review.

Eur J Med Chem. 2024-9-5

[2]
Structural and functional complexity of HSP90 in cellular homeostasis and disease.

Nat Rev Mol Cell Biol. 2023-11

[3]
Cascade Transformation of the Ansamycin Benzoquinone Core into Benzoxazole Influencing Anticancer Activity and Selectivity.

J Org Chem. 2023-7-7

[4]
Modifications of geldanamycin via CuAAC altering affinity to chaperone protein Hsp90 and cytotoxicity.

Eur J Med Chem. 2023-8-5

[5]
Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities.

Pharmacol Ther. 2023-5

[6]
Identification of global inhibitors of cellular glycosylation.

Nat Commun. 2023-2-20

[7]
Novel NRF2-activated cancer treatments utilizing synthetic lethality.

IUBMB Life. 2022-12

[8]
Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance.

Biomolecules. 2022-8-23

[9]
Pimitespib: First Approval.

Drugs. 2022-9

[10]
Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances.

Eur J Med Chem. 2022-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索