Hu Chenghong, Hong Ximeng, Liu Miaoling, Shen Kui, Chen Liyu, Li Yingwei
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
Adv Mater. 2024 Nov;36(48):e2409531. doi: 10.1002/adma.202409531. Epub 2024 Oct 3.
Metal sites at the edge of the carbon matrix possess unique geometric and electronic structures, exhibiting higher intrinsic activity than in-plane sites. However, creating single-atom catalysts with high-density edge sites remains challenging. Herein, the hierarchically ordered pore engineering of metal-organic framework-based materials to construct high-density edge-type single-atomic Ni sites for electrochemical CO reduction reaction (CORR) is reported. The created ordered macroporous structure can expose enriched edges, further increased by hollowing the pore walls, which overcomes the low edge percentage in the traditional microporous substrates. The prepared single-atomic Ni sites on the ordered macroporous carbon with ultra-thin hollow walls (Ni/H-OMC) exhibit Faraday efficiencies of CO above 90% in an ultra-wide potential window of 600 mV and a turnover frequency of 3.4 × 10 h, much superior than that of the microporous material with dominant plane-type sites. Theory calculations reveal that NiN sites at the edges have a significantly disrupted charge distribution, forming electron-rich Ni centers with enhanced adsorption ability with COOH, thereby boosting CORR efficiency. Furthermore, a Zn-CO battery using the Ni/H-OMC cathode shows an unprecedentedly high power density of 15.9 mW cm and maintains an exceptionally stable charge-discharge performance over 100 h.
碳基体边缘的金属位点具有独特的几何和电子结构,其本征活性高于面内位点。然而,制备具有高密度边缘位点的单原子催化剂仍然具有挑战性。在此,报道了基于金属有机框架材料的分级有序孔工程,以构建用于电化学CO还原反应(CORR)的高密度边缘型单原子Ni位点。所创建的有序大孔结构可以暴露出丰富的边缘,通过使孔壁中空可进一步增加边缘,这克服了传统微孔基底中边缘比例低的问题。在具有超薄中空壁的有序大孔碳上制备的单原子Ni位点(Ni/H-OMC)在600 mV的超宽电位窗口中表现出高于90%的CO法拉第效率和3.4×10 h的周转频率,远优于具有主导面型位点的微孔材料。理论计算表明,边缘处的NiN位点具有明显破坏的电荷分布,形成了对COOH具有增强吸附能力的富电子Ni中心,从而提高了CORR效率。此外,使用Ni/H-OMC阴极的Zn-CO电池显示出前所未有的15.9 mW cm的高功率密度,并在100 h以上保持异常稳定的充放电性能。