Suppr超能文献

高密度肌电图和深度学习在模拟真实生活条件下同时估计指尖力和手姿势。

Simultaneous Estimation of Digit Tip Forces and Hand Postures in a Simulated Real-Life Condition With High-Density Electromyography and Deep Learning.

出版信息

IEEE J Biomed Health Inform. 2024 Oct;28(10):5708-5717. doi: 10.1109/JBHI.2024.3350239.

Abstract

In myoelectric control, continuous estimation of multiple degrees of freedom has an important role. Most studies have focused on estimating discrete postures or forces of the human hand but for a practical prosthetic system, both should be considered. In daily life activities, hand postures vary for grasping different objects and the amount of force exerted on each fingertip depends on the shape and weight of the object. This study aims to investigate the feasibility of continuous estimation of multiple degrees of freedom. We proposed a reach and grasp framework to study both absolute fingertip forces and hand movement types using deep learning techniques applied to high-density surface electromyography (HD-sEMG). Four daily life grasp types were examined and absolute fingertip forces were simultaneously estimated while grasping various objects, along with the grasp types. We showed that combining a 3-dimensional Convolutional Neural Network (3DCNN) with a Long Short-term Memory (LSTM) can reliably and continuously estimate the digit tip forces and classify different hand postures in human individuals. The mean absolute error (MAE) and Pearson correlation coefficient (PCC) results of the force estimation problem across all fingers and subjects were 0.46 ± 0.23 and 0.90 ± 0.03% respectively and for the classification problem, they were 0.04 ± 0.01 and 0.97 ± 0.02%. The results demonstrated that both absolute digit tip forces and hand postures can be successfully estimated through deep learning and HD-sEMG.

摘要

在肌电控制中,对多个自由度的连续估计具有重要作用。大多数研究都集中在手的离散姿势或力的估计上,但对于实际的假肢系统,两者都应该考虑。在日常生活活动中,手的姿势因抓取不同的物体而变化,而每个指尖施加的力的大小取决于物体的形状和重量。本研究旨在探讨连续估计多个自由度的可行性。我们提出了一种到达和抓取框架,使用深度学习技术应用于高密度表面肌电图 (HD-sEMG) 来研究绝对指尖力和手部运动类型。研究了四种日常生活中的抓握类型,并在抓取各种物体的同时同时估计绝对指尖力和抓握类型。我们表明,将 3 维卷积神经网络 (3DCNN) 与长短期记忆 (LSTM) 相结合,可以可靠地连续估计个体人手的指尖力并分类不同的手部姿势。在所有手指和受试者中,力估计问题的平均绝对误差 (MAE) 和 Pearson 相关系数 (PCC) 结果分别为 0.46 ± 0.23%和 0.90 ± 0.03%,而分类问题的结果分别为 0.04 ± 0.01%和 0.97 ± 0.02%。结果表明,通过深度学习和 HD-sEMG 可以成功估计绝对指尖力和手部姿势。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验