Taguchi Katsuyuki, Schaart Dennis R, Goorden Marlies C, Hsieh Scott S
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands.
Med Phys. 2025 Jan;52(1):158-170. doi: 10.1002/mp.17436. Epub 2024 Oct 3.
Photon counting detectors (PCDs) for x-ray computed tomography (CT) are the future of CT imaging. At present, semiconductor-based PCDs such as cadmium telluride (CdTe), cadmium zinc telluride, and silicon have been either used or investigated for clinical PCD CT. Unfortunately, all of them have the same major challenges, namely high cost and limited spectral signal-to-noise ratio (SNR). Recent studies showed that some high-quality scintillators, such as lanthanum bromide doped with cerium (LaBr:Ce), are less expensive and almost as fast as CdTe.
The objective of this study is to assess the performance of a LaBr:Ce PCD for clinical x-ray CT.
We performed Monte Carlo simulations and compared the performance of 3 mm thick LaBr:Ce and 2 mm thick CdTe for PCD CT with x-rays at 120 kVp and 20-1000 mA. The two PCDs were operated with either a threshold-subtract (TS) counting scheme or a direct energy binning (DB) counting scheme. The performance was assessed in terms of the accuracy of registered spectra, counting capability, and count-rate-dependent spectral imaging-task performance, for conventional CT imaging, water-bone material decomposition, and K-edge imaging with tungsten as the K-edge material. The performance for these imaging-tasks was quantified by nCRLB, that is, the Cramér-Rao lower bound on the variance of basis line-integral estimation, normalized by the corresponding value of CdTe at 20 mA.
The spectrum recorded by CdTe was distorted significantly due to charge sharing, whereas the spectra recorded by LaBr:Ce better matched the incident spectrum. The dead time, estimated by fitting a paralyzable detector model to the count-rate curves, was 20.7, 15.0, 37.2, and 13.0 ns for CdTe with TS, CdTe with DB, LaBr:Ce with TS, and LaBr:Ce with DB, respectively. Conventional CT imaging showed an adverse effect of reduced geometrical efficiency due to optical reflectors in LaBr:Ce PCD. The nCRLBs (a lower value indicates a better SNR) for CdTe with TS, CdTe with DB, LaBr:Ce with TS, LaBr:Ce with DB, and the ideal PCD, were 1.00 ± 0.01, 1.00 ± 0.01, 1.18 ± 0.02, 1.18 ± 0.02, and 0.79 ± 0.01, respectively, at 20 mA. The nCRLBs for water-bone material decomposition, in the same order, were 1.00 ± 0.02, 1.00 ± 0.02, 0.85 ± 0.02, 0.85 ± 0.02, and 0.24 ± 0.02, respectively, at 20 mA; and 0.98 ± 0.02, 0.98 ± 0.02, 1.09 ± 0.02, 0.83 ± 0.02, and 0.24 ± 0.02, respectively, at 1000 mA. Finally, the nCRLBs for K-edge imaging, the most demanding task among the five, were 1.00 ± 0.02, 1.00 ± 0.02, 0.55 ± 0.02, 0.55 ± 0.02, and 0.13 ± 0.02, respectively, at 20 mA; and 2.45 ± 0.02, 2.29 ± 0.02, 3.12 ± 0.02, 2.11 ± 0.02, and 0.13 ± 0.02, respectively, at 1,000 mA.
The Monte Carlo simulations showed that, compared to CdTe with either TS or DB, LaBr:Ce with DB provided more accurate spectra, comparable or better counting capability, and superior spectral imaging-task performances, that is, water-bone material decomposition and K-edge imaging. CdTe had a better performance than LaBr:Ce for the conventional CT imaging task due to its higher geometrical efficiency. LaBr:Ce PCD with DB scheme may be an excellent alternative option for CdTe PCD.
用于X射线计算机断层扫描(CT)的光子计数探测器(PCD)是CT成像的未来发展方向。目前,基于半导体的PCD,如碲化镉(CdTe)、碲锌镉和硅,已被用于临床PCD CT或正在进行相关研究。不幸的是,它们都面临相同的主要挑战,即成本高和光谱信噪比(SNR)有限。最近的研究表明,一些高质量的闪烁体,如掺铈溴化镧(LaBr:Ce),成本较低且几乎与CdTe一样快。
本研究的目的是评估用于临床X射线CT的LaBr:Ce PCD的性能。
我们进行了蒙特卡罗模拟,并比较了3毫米厚的LaBr:Ce和2毫米厚的CdTe在120 kVp和20 - 1000 mA X射线下用于PCD CT的性能。两种PCD采用阈值减法(TS)计数方案或直接能量分箱(DB)计数方案运行。从常规CT成像、水 - 骨材料分解以及以钨作为K边材料的K边成像的已记录光谱准确性、计数能力和计数率相关光谱成像任务性能方面评估性能。这些成像任务的性能通过nCRLB进行量化,即基线积分估计方差的克拉美 - 罗下界,并以20 mA时CdTe的相应值进行归一化。
由于电荷共享,CdTe记录的光谱严重失真,而LaBr:Ce记录的光谱与入射光谱更匹配。通过将可瘫痪探测器模型拟合到计数率曲线估计的死时间,对于采用TS的CdTe、采用DB的CdTe、采用TS的LaBr:Ce和采用DB的LaBr:Ce分别为20.7、15.0、37.2和13.0 ns。常规CT成像显示,由于LaBr:Ce PCD中的光学反射器,几何效率降低产生了不利影响。在20 mA时,采用TS的CdTe、采用DB的CdTe、采用TS的LaBr:Ce、采用DB的LaBr:Ce以及理想PCD的nCRLB(值越低表示SNR越好)分别为1.00 ± 0.01、1.00 ± 0.01、1.18 ± 0.02、1.18 ± 0.02和0.79 ± 0.01。在20 mA时,水 - 骨材料分解的nCRLB按相同顺序分别为1.00 ± 0.02、1.00 ± 0.02、0.85 ± 0.02、0.85 ± 0.02和0.24 ± 0.02;在1000 mA时分别为0.98 ± 0.02、0.98 ± 0.02、1.09 ± 0.02、0.83 ± 0.02和0.24 ± 0.02。最后,在五个任务中要求最高的K边成像的nCRLB在20 mA时分别为1.00 ± 0.02、1.00 ± 0.02、0.55 ± 0.02、0.55 ± 0.02和0.13 ± 0.02;在1000 mA时分别为2.45 ± 0.02、2.29 ± 0.02、3.12 ± 0.02、2.11 ± 0.02和0.13 ± 0.02。
蒙特卡罗模拟表明,与采用TS或DB的CdTe相比,采用DB的LaBr:Ce提供了更准确的光谱、相当或更好的计数能力以及卓越的光谱成像任务性能,即水 - 骨材料分解和K边成像。由于其更高的几何效率,在常规CT成像任务中CdTe的性能优于LaBr:Ce。采用DB方案的LaBr:Ce PCD可能是CdTe PCD的一个优秀替代选项。