Davoudkhani Iraj Faraji, Zare Peyman, Abdelaziz Almoataz Y, Bajaj Mohit, Tuka Milkias Berhanu
Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt.
Sci Rep. 2024 Jun 17;14(1):13962. doi: 10.1038/s41598-024-64794-y.
Electricity generation in Islanded Urban Microgrids (IUMG) now relies heavily on a diverse range of Renewable Energy Sources (RES). However, the dependable utilization of these sources hinges upon efficient Electrical Energy Storage Systems (EESs). As the intermittent nature of RES output and the low inertia of IUMGs often lead to significant frequency fluctuations, the role of EESs becomes pivotal. While these storage systems effectively mitigate frequency deviations, their high costs and elevated power density requirements necessitate alternative strategies to balance power supply and demand. In recent years, substantial attention has turned towards harnessing Electric Vehicle (EV) batteries as Mobile EV Energy Storage (MEVES) units to counteract frequency variations in IUMGs. Integrating MEVES into the IUMG infrastructure introduces complexity and demands a robust control mechanism for optimal operation. Therefore, this paper introduces a robust, high-order degree of freedom cascade controller known as the 1PD-3DOF-PID (1 + Proportional + Derivative-Three Degrees Of Freedom Proportional-Integral-Derivative) controller for Load Frequency Control (LFC) in IUMGs integrated with MEVES. The controller's parameters are meticulously optimized using the Coati Optimization Algorithm (COA) which mimics coati behavior in nature, marking its debut in LFC of IUMG applications. Comparative evaluations against classical controllers and algorithms, such as 3DOF-PID, PID, Reptile Search Algorithm, and White Shark Optimizer, are conducted under diverse IUMG operating scenarios. The testbed comprises various renewable energy sources, including wind turbines, photovoltaics, Diesel Engine Generators (DEGs), Fuel Cells (FCs), and both Mobile and Fixed energy storage units. Managing power balance in this entirely renewable environment presents a formidable challenge, prompting an examination of the influence of MEVES, DEG, and FC as controllable units to mitigate active power imbalances. Metaheuristic algorithms in MATLAB-SIMULINK platforms are employed to identify the controller's gains across all case studies, ensuring the maintenance of IUMG system frequency within predefined limits. Simulation results convincingly establish the superiority of the proposed controller over other counterparts. Furthermore, the controller's robustness is rigorously tested under ± 25% variations in specific IUMG parameters, affirming its resilience. Statistical analyses reinforce the robust performance of the COA-based 1PD-3DOF-PID control method. This work highlights the potential of the COA Technique-optimized 1PD-3DOF-PID controller for IUMG control, marking its debut application in the LFC domain for IUMGs. This comprehensive study contributes valuable insights into enhancing the reliability and stability of Islanded Urban Microgrids while integrating Mobile EV Energy Storage, marking a significant advancement in the field of Load-Frequency Control.
孤岛城市微电网(IUMG)中的发电现在严重依赖于多种可再生能源(RES)。然而,这些能源的可靠利用取决于高效的电能存储系统(EES)。由于RES输出的间歇性以及IUMG的低惯性常常导致显著的频率波动,EES的作用变得至关重要。虽然这些存储系统有效地减轻了频率偏差,但其高成本和高功率密度要求需要替代策略来平衡电力供需。近年来,大量关注转向利用电动汽车(EV)电池作为移动EV储能(MEVES)单元来抵消IUMG中的频率变化。将MEVES集成到IUMG基础设施中会带来复杂性,并且需要强大的控制机制以实现最优运行。因此,本文针对集成了MEVES的IUMG中的负荷频率控制(LFC),引入了一种强大的、具有高阶自由度的级联控制器,即1PD - 3DOF - PID(1 + 比例 + 微分 - 三自由度比例 - 积分 - 微分)控制器。使用模仿浣熊自然行为的浣熊优化算法(COA)精心优化控制器的参数,这是其在IUMG应用的LFC中首次亮相。在不同的IUMG运行场景下,针对经典控制器和算法,如3DOF - PID、PID、爬虫搜索算法和白鲨优化器,进行了对比评估。测试平台包括各种可再生能源,如风力涡轮机、光伏、柴油发动机发电机(DEG)、燃料电池(FC)以及移动和固定储能单元。在这个完全可再生的环境中管理功率平衡是一项艰巨的挑战,这促使人们研究MEVES、DEG和FC作为可控单元对减轻有功功率不平衡的影响。在MATLAB - SIMULINK平台上使用元启发式算法来确定所有案例研究中控制器的增益,确保将IUMG系统频率维持在预定义的范围内。仿真结果令人信服地证明了所提出的控制器优于其他同类控制器。此外,在特定IUMG参数±25%的变化下对控制器的鲁棒性进行了严格测试,证实了其弹性。统计分析强化了基于COA的1PD - 3DOF - PID控制方法的鲁棒性能。这项工作突出了COA技术优化的1PD - 3DOF - PID控制器在IUMG控制中的潜力,标志着其在IUMG的LFC领域的首次应用。这项全面的研究为在集成移动EV储能的同时提高孤岛城市微电网的可靠性和稳定性提供了有价值的见解,标志着负荷频率控制领域的重大进展。