Suppr超能文献

多强算强?解读网络边缘权重的挑战。

How strong is strong? The challenge of interpreting network edge weights.

机构信息

Psychology Department, Michigan State University, East Lansing, MI, United States of America.

出版信息

PLoS One. 2024 Oct 3;19(10):e0311614. doi: 10.1371/journal.pone.0311614. eCollection 2024.

Abstract

Weighted networks are information-rich and highly-flexible, but they can be difficult to analyze because the interpretation of edges weights is often ambiguous. Specifically, the meaning of a given edge's weight is locally contingent, so that a given weight may be strong for one dyad, but weak for other dyad, even in the same network. I use backbone models to distinguish strong and weak edges in a corpus of 110 weighted networks, and used the results to examine the magnitude of this ambiguity. Although strong edges have larger weights than weak edges on average, a large fraction of edges' weights provide ambiguous information about whether it is strong or weak. Based on these results, I recommend that strong edges should be identified by applying an appropriate backbone model, and that once strong edges have been identified using a backbone model, their original weights should not be directly interpreted or used in subsequent analysis.

摘要

加权网络信息丰富且高度灵活,但由于边缘权重的解释往往不明确,因此很难进行分析。具体来说,给定边权重的含义在局部上是偶然的,因此对于同一网络中的一个对子,给定的权重可能很强,但对于另一个对子可能很弱。我使用骨干模型来区分 110 个加权网络中的强边和弱边,并使用结果来检验这种模糊性的程度。虽然强边的权重平均大于弱边,但很大一部分边的权重提供了关于其强弱的模糊信息。基于这些结果,我建议通过应用适当的骨干模型来识别强边,并且一旦使用骨干模型识别出强边,就不应直接解释或在后续分析中使用它们的原始权重。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b615/11449300/f353b6a35995/pone.0311614.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验