Xiong Wanning, Zhao Linlin, Ouyang Jie, Tian Yi, Wang Lixin, Li Mengyao, Wang Yuzhu, Cheng Mengting, Sheng Qingquan, Li Zejun, Luo Jianhua, Luo Yongfeng
Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
J Colloid Interface Sci. 2025 Feb;679(Pt A):243-252. doi: 10.1016/j.jcis.2024.09.247. Epub 2024 Oct 1.
The renewable nature, high carbon content, and unique hierarchical structure of wood-derived carbon make it an optimal self-supporting electrode for energy storage. However, the limitations in specific surface area and electrical conductivity defects pose challenges to achieving satisfactory charge storage in wood-derived carbon electrodes. Therefore, exploring diverse and effective surface strategies is crucial for enhancing the electrochemical energy storage performance. Herein, a decoration technique for enhancing aesthetic appeal involves applying a metal-organic framework (Ni/Co-MOF) containing nickel and cobalt onto the inner walls of wood tracheids. The sequential modification steps include carbonization, oxidation activation, and acid-etching. The Ni/NiO/CoO-CW-4 electrode, made by acid-etching carbonized wood (CW) doped with nickel, nickel oxide, and cobalt oxide for 4 h, has excellent surface area and pore size distribution, high graphitization degree, and exceptional conductivity. Furthermore, surface modification optimizes the surface chemistry and phase composition, resulting in a 0.8 mm thick Ni/NiO/CoO-CW-4 electrode with an exceptionally high areal capacitance of 16.76 F cm at 5 mA cm. Meanwhile, the fabricated solid-state supercapacitor achieves an impressive energy density of 0.67 mWh cm (8.38 mWh cm) at 2.5 mW cm (31.25 mW cm), surpassing representative modified wood-based carbon electrodes by approximately 2-7 times. Additionally, the supercapacitor demonstrates exceptional stability, maintaining 96.21 % of capacitance even over 10,000 cycles. The parameters presented here demonstrate a significant improvement compared to those typically observed in most modified wood-derived carbon-based supercapacitors, effectively addressing common issues of low energy density and suboptimal cycling performance with wood carbon composites.
木材衍生碳的可再生特性、高碳含量和独特的分级结构使其成为储能的理想自支撑电极。然而,比表面积的限制和导电性缺陷对在木材衍生碳电极中实现令人满意的电荷存储构成了挑战。因此,探索多样且有效的表面策略对于提高电化学储能性能至关重要。在此,一种增强美学吸引力的装饰技术涉及将含有镍和钴的金属有机框架(Ni/Co-MOF)应用于木材导管的内壁。连续的改性步骤包括碳化、氧化活化和酸蚀刻。通过对掺杂镍、氧化镍和氧化钴的碳化木材(CW)进行4小时酸蚀刻制成的Ni/NiO/CoO-CW-4电极具有优异的表面积和孔径分布、高石墨化程度以及出色的导电性。此外,表面改性优化了表面化学和相组成,从而得到了一个厚度为0.8毫米的Ni/NiO/CoO-CW-4电极,在5 mA cm时具有16.76 F cm的极高面积电容。同时,所制备的固态超级电容器在2.5 mW cm(31.25 mW cm)时实现了令人印象深刻的0.67 mWh cm(8.38 mWh cm)的能量密度,比代表性的改性木质基碳电极高出约2至7倍。此外,该超级电容器表现出卓越的稳定性,即使在10000次循环后仍保持96.21%的电容。这里呈现的参数与大多数改性木材衍生碳基超级电容器中通常观察到的参数相比有显著改善,有效解决了木材碳复合材料能量密度低和循环性能欠佳的常见问题。