School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea.
J Environ Manage. 2024 Nov;370:122699. doi: 10.1016/j.jenvman.2024.122699. Epub 2024 Oct 2.
Simulation-optimization modeling is extensively used to identify optimal remediation designs. However, verifying these optimal solutions often remains unclear. In this study, we determine optimal groundwater remediation strategies using simulation-optimization modeling and assess the effectiveness of previous remediation efforts by validating optimized results through 14 years of long-term monitoring of trichloroethylene (TCE) contamination. The study site is the Road Administrative Office (RAO) in Wonju, Korea, where significant TCE contamination has occurred, and long-term in-situ remediation and monitoring have been conducted. We employ MODFLOW for simulating groundwater flow and MT3D for modeling dissolved TCE concentration distribution. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied to derive optimal groundwater remediation designs. Initial simulation results effectively predicted long-term TCE contamination trends and the impact of short-term in-situ remediation. Our evaluation involved comparing these optimal designs with field test outcomes, leading to the integration of continuous intensive pump-and-treat with in-situ remediation strategies. By comparing various modeling scenarios against long-term TCE contamination trends, we confirmed the effectiveness of previous remediation efforts and demonstrated that the optimal remediation design substantially minimized TCE concentrations at the main source zone. This study highlights successful strategies in historical contamination and remediation trend assessments, proposing an optimal design for pump-and-treat with reduced pumping stress to manage remaining TCE contamination at the site effectively.
模拟-优化建模被广泛用于确定最佳的修复设计。然而,验证这些最优解决方案通常并不明确。在本研究中,我们使用模拟-优化建模来确定最优的地下水修复策略,并通过对三氯乙烯(TCE)污染进行 14 年的长期监测来验证优化结果,评估先前修复工作的有效性。研究地点是韩国原州的道路管理办公室(RAO),那里发生了严重的 TCE 污染,并进行了长期的原位修复和监测。我们采用 MODFLOW 模拟地下水流动,采用 MT3D 模拟溶解 TCE 浓度分布。非支配排序遗传算法-II(NSGA-II)用于导出最优的地下水修复设计。初始模拟结果有效地预测了 TCE 污染的长期趋势和短期原位修复的影响。我们的评估涉及将这些最优设计与现场测试结果进行比较,导致连续强化的抽吸和处理与原位修复策略的整合。通过将各种建模情景与 TCE 污染的长期趋势进行比较,我们证实了先前修复工作的有效性,并表明最优修复设计大大降低了主要源区的 TCE 浓度。本研究强调了在历史污染和修复趋势评估方面的成功策略,提出了一种优化的抽吸和处理设计,以有效管理现场剩余的 TCE 污染,减轻抽吸压力。