Suppr超能文献

碳化腐殖酸和镁铝层状双氢氧化物促进生物制氢的作用机制。

Mechanism of carbonized humic acid and magnesium aluminum-layered double hydroxide promoting biohydrogen generation.

机构信息

College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Shandong Institute of Geophysical &Geochemical Exploration, Jinan 250013, China.

出版信息

Bioresour Technol. 2024 Dec;413:131563. doi: 10.1016/j.biortech.2024.131563. Epub 2024 Oct 1.

Abstract

Dark fermentation (DF) is prone to low hydrogen (H) yield. In this work, magnesium aluminum-layered double hydroxide and carbonized humic acid (MgAl-LDH/CHA) was synthesized by co-precipitation to reveal the mechanism in rising bioH generation. The results indicated that MgAl-LDH released Mg and Al ions slowly in DF system, improving the activity of H-producing microbes (HPM) for more H. The H yield increased from 169.3 mL/g glucose to 244.9 mL/g glucose, which was 44.7 % higher than that for the control yield. MgAl-LDH/CHA increased Proteobacteria content from 30.9 % to 43.7 %, making it form a complex microbial community and participate in DF metabolism with Firmicutes and other microbes together. Besides, MgAl-LDH/CHA could serve as an electron shuttle that likely effectively promotes electron transfer in DF, significantly reduced the energy requirements of HPM, thus raising metabolic activity. It provides direction for the multi-element composite applied in DF system.

摘要

暗发酵(DF)容易产生低氢(H)产量。在这项工作中,通过共沉淀合成了镁铝层状双氢氧化物和碳化腐殖酸(MgAl-LDH/CHA),以揭示提高生物 H 生成的机制。结果表明,MgAl-LDH 在 DF 系统中缓慢释放 Mg 和 Al 离子,提高了产氢微生物(HPM)的活性,从而产生更多的 H。H 的产量从 169.3 mL/g 葡萄糖增加到 244.9 mL/g 葡萄糖,比对照产量高 44.7%。MgAl-LDH/CHA 增加了变形菌门的含量,从 30.9%增加到 43.7%,使其与厚壁菌门和其他微生物一起形成复杂的微生物群落,并参与 DF 代谢。此外,MgAl-LDH/CHA 可以作为电子穿梭体,可能有效地促进 DF 中的电子转移,显著降低 HPM 的能量需求,从而提高代谢活性。它为多元素复合材料在 DF 系统中的应用提供了方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验