Suppr超能文献

通过具有可控N-N偶联的级联电催化氨生产将硝酸盐升级为肼。

Upgrading of nitrate to hydrazine through cascading electrocatalytic ammonia production with controllable N-N coupling.

作者信息

Jia Shunhan, Zhang Libing, Liu Hanle, Wang Ruhan, Jin Xiangyuan, Wu Limin, Song Xinning, Tan Xingxing, Ma Xiaodong, Feng Jiaqi, Zhu Qinggong, Kang Xinchen, Qian Qingli, Sun Xiaofu, Han Buxing

机构信息

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.

出版信息

Nat Commun. 2024 Oct 3;15(1):8567. doi: 10.1038/s41467-024-52825-1.

Abstract

Nitrogen oxides (NO) play important roles in the nitrogen cycle system and serve as renewable nitrogen sources for the synthesis of value-added chemicals driven by clean electricity. However, it is challenging to achieve selective conversion of NO to multi-nitrogen products (e.g., NH) via precise construction of a single N-N bond. Herein, we propose a strategy for NO-to-NH under ambient conditions, involving electrochemical NO upgrading to NH, followed by ketone-mediated NH to NH. It can achieve an impressive overall NO-to-NH selectivity of 88.7%. We elucidate mechanistic insights into the ketone-mediated N-N coupling process. Diphenyl ketone (DPK) emerges as an optimal mediator, facilitating controlled N-N coupling, owing to its steric and conjugation effects. The acetonitrile solvent stabilizes and activates key imine intermediates through hydrogen bonding. Experimental results reveal that PhCN* intermediates formed on WO catalysts acted as pivotal monomers to drive controlled N-N coupling with high selectivity, facilitated by lattice-oxygen-mediated dehydrogenation. Additionally, both WO catalysts and DPK mediators exhibit favorable reusability, offering promise for green NH synthesis.

摘要

氮氧化物(NO)在氮循环系统中发挥着重要作用,并且作为由清洁电力驱动的增值化学品合成的可再生氮源。然而,通过精确构建单个N-N键将NO选择性转化为多氮产物(例如NH)具有挑战性。在此,我们提出了一种在环境条件下将NO转化为NH的策略,包括将电化学NO升级为NH,然后通过酮介导将NH转化为NH。它可以实现令人印象深刻的88.7%的整体NO到NH的选择性。我们阐明了酮介导的N-N偶联过程的机理见解。由于其空间和共轭效应,二苯甲酮(DPK)成为促进可控N-N偶联的最佳介质。乙腈溶剂通过氢键稳定并激活关键的亚胺中间体。实验结果表明,在WO催化剂上形成的PhCN*中间体作为关键单体,通过晶格氧介导的脱氢作用促进了高选择性的可控N-N偶联。此外,WO催化剂和DPK介质都表现出良好的可重复使用性,为绿色NH合成带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1de/11450151/d08fdfb6dbf3/41467_2024_52825_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验