Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
Commun Biol. 2024 Oct 3;7(1):1252. doi: 10.1038/s42003-024-06921-z.
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
信息素传递丰富的行为学信息,并指导昆虫的搜索行为。在湍流环境中导航的昆虫面临着对气味羽流的时间结构进行编码的挑战,这就需要识别气味的起始和结束。塑造气味结束识别的编码机制仍然难以捉摸。我们设计了一种设备来输送尖锐的信息素脉冲,并同时测量雄蛾和果蝇中对信息素敏感的嗅觉受体神经元 (ORN) 的反应动力学。我们表明,在两个时间尺度上通过尖峰频率适应实现了浓度不变的刺激持续时间编码。线性非线性模型完全捕捉到了潜在的神经计算,并深入了解了它们的生物物理机制。果蝇仅将顺式-戊烯基乙酸酯 (cVA) 用作非常短距离的通讯信息素,并且不需要对 cVA 羽流的统计数据进行编码。它们的 cVA 敏感 ORN 实际上无法编码气味结束事件。在果蝇的 cVA 敏感 ORN 中表达 moth 信息素受体表明,刺激结束编码与受体无关。在 moth ORN 中,对于短(<200 ms)的气味,刺激结束编码会中断。这种生理限制与失去与信息素接触后从顺风突进到逆风抛掷飞行的行为潜伏期相匹配。