Suppr超能文献

含β导数的分数阶(3 + 1)维瓦兹瓦兹-考尔-布辛涅斯克方程的混沌分析与行波解

Chaos analysis and traveling wave solutions for fractional (3+1)-dimensional Wazwaz Kaur Boussinesq equation with beta derivative.

作者信息

Zhao Shan

机构信息

School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu, 610106, China.

出版信息

Sci Rep. 2024 Oct 3;14(1):23034. doi: 10.1038/s41598-024-74606-y.

Abstract

Wazwaz Kaur Boussinesq (WKB) equation can effectively simulate the behavior of water waves in shallow water, including the nonlinear effect and dispersion phenomenon of waves, which is of great significance for understanding the dynamic process of ocean, river and other water bodies. To enrich the wave equation theory, the (3+1)-dimensional integer order derivative of WKB equation is changed to the fractional one with beta derivative. The current work deals with the fractional (3+1)-dimensional WKB equation for discussing its chaotic behavior and establishing some new analytic solutions. The chaotic properties of the equation are verified by the trend of evolution along with time, Lyapunov exponents and initial sensitivity analysis. And then complete discrimination system for polynomial method is applied to derive some trigonometric, hyperbolic, Jacobi elliptic and other solutions. The graphical demonstrations are provided for part of these solutions. From these visualized graphs, the solitary, periodic and quasi-periodic wave are shown and the effect of fractional derivatives on the equation can be seen intuitively.

摘要

瓦兹瓦兹·考尔·布辛涅斯克(WKB)方程能够有效地模拟浅水波的行为,包括波浪的非线性效应和色散现象,这对于理解海洋、河流等水体的动力学过程具有重要意义。为了丰富波动方程理论,将WKB方程的(3 + 1)维整数阶导数改为具有β导数的分数阶导数。当前工作研究分数阶(3 + 1)维WKB方程,以讨论其混沌行为并建立一些新的解析解。通过随时间的演化趋势、李雅普诺夫指数和初始敏感性分析来验证该方程的混沌特性。然后应用多项式方法的完全判别系统来推导一些三角函数、双曲函数、雅可比椭圆函数等解。为其中部分解提供了图形演示。从这些可视化图形中,可以看到孤立波、周期波和准周期波,并且可以直观地看出分数阶导数对方程的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f3d/11450064/c2f67b0e9001/41598_2024_74606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验