Suppr超能文献

用于高效阿尔茨海默病分类的视觉Transformer架构集成

Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification.

作者信息

Shaffi Noushath, Viswan Vimbi, Mahmud Mufti

机构信息

Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box: 36, Al-Khod, 123, Muscat, Sultanate of Oman.

College of Computing and Information Sciences, University of Technology and Applied Sciences, OM 311, Sohar, Sultanate of Oman.

出版信息

Brain Inform. 2024 Oct 3;11(1):25. doi: 10.1186/s40708-024-00238-7.

Abstract

Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.

摘要

Transformer在自然语言处理(NLP)领域占据主导地位,并彻底改变了生成式人工智能应用。视觉Transformer(VT)最近已成为计算机视觉应用的新的最先进技术。受VT在捕捉短程和长程依赖关系方面的成功及其处理类别不平衡能力的启发,本文提出了一个VT集成框架,用于阿尔茨海默病(AD)的高效分类。该框架由四个普通VT以及使用硬投票和软投票方法形成的集成组成。所提出的模型使用两个流行的AD数据集进行了测试:OASIS和ADNI。ADNI数据集用于评估模型在不平衡和数据稀缺条件下的有效性。与单个模型相比,VT集成的性能提高了约2%。此外,还将结果与不同数据条件下的最先进的定制卷积神经网络(CNN)架构和机器学习(ML)模型进行了比较。实验结果表明,与ML和CNN算法相比,总体性能分别提高了4.14%和4.72%的准确率。该研究还确定了具体局限性,并提出了未来研究的方向。该研究中使用的代码已公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f96/11450128/985fe9b04d9f/40708_2024_238_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验