文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度、浅层和集成机器学习方法在阿尔茨海默病自动分类中的性能评估。

Performance Evaluation of Deep, Shallow and Ensemble Machine Learning Methods for the Automated Classification of Alzheimer's Disease.

机构信息

College of Computing and Information Sciences, University of Technology and Applied Sciences, P.O. Box: 135, Suhar 311, Sultanate of Oman, Oman.

Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box: 36, Al-Khod 123, Sultanate of Oman, Oman.

出版信息

Int J Neural Syst. 2024 Jul;34(7):2450029. doi: 10.1142/S0129065724500291. Epub 2024 Apr 5.


DOI:10.1142/S0129065724500291
PMID:38576308
Abstract

Artificial intelligence (AI)-based approaches are crucial in computer-aided diagnosis (CAD) for various medical applications. Their ability to quickly and accurately learn from complex data is remarkable. Deep learning (DL) models have shown promising results in accurately classifying Alzheimer's disease (AD) and its related cognitive states, Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI), along with the healthy conditions known as Cognitively Normal (CN). This offers valuable insights into disease progression and diagnosis. However, certain traditional machine learning (ML) classifiers perform equally well or even better than DL models, requiring less training data. This is particularly valuable in CAD in situations with limited labeled datasets. In this paper, we propose an ensemble classifier based on ML models for magnetic resonance imaging (MRI) data, which achieved an impressive accuracy of 96.52%. This represents a 3-5% improvement over the best individual classifier. We evaluated popular ML classifiers for AD classification under both data-scarce and data-rich conditions using the Alzheimer's Disease Neuroimaging Initiative and Open Access Series of Imaging Studies datasets. By comparing the results to state-of-the-art CNN-centric DL algorithms, we gain insights into the strengths and weaknesses of each approach. This work will help users to select the most suitable algorithm for AD classification based on data availability.

摘要

人工智能(AI)方法在各种医学应用的计算机辅助诊断(CAD)中至关重要。它们从复杂数据中快速准确学习的能力令人瞩目。深度学习(DL)模型在准确分类阿尔茨海默病(AD)及其相关认知状态(早期轻度认知障碍[EMCI]和晚期轻度认知障碍[LMCI])以及认知正常(CN)健康状态方面取得了有前景的结果。这为疾病进展和诊断提供了有价值的见解。然而,某些传统机器学习(ML)分类器的性能与 DL 模型一样好,甚至更好,只需较少的训练数据。在 CAD 中,这在标记数据集有限的情况下尤其有价值。在本文中,我们提出了一种基于 ML 模型的磁共振成像(MRI)数据集成分类器,其准确率达到了令人印象深刻的 96.52%。这比最佳单个分类器提高了 3-5%。我们在数据稀缺和数据丰富的情况下使用阿尔茨海默病神经影像学倡议和开放访问成像研究数据集评估了 AD 分类的流行 ML 分类器。通过将结果与最先进的基于卷积神经网络(CNN)的 DL 算法进行比较,我们深入了解了每种方法的优缺点。这项工作将帮助用户根据数据可用性选择最适合 AD 分类的算法。

相似文献

[1]
Performance Evaluation of Deep, Shallow and Ensemble Machine Learning Methods for the Automated Classification of Alzheimer's Disease.

Int J Neural Syst. 2024-7

[2]
A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.

J Med Syst. 2019-12-18

[3]
Comparing different algorithms for the course of Alzheimer's disease using machine learning.

Ann Palliat Med. 2021-9

[4]
Deep Learning and Risk Score Classification of Mild Cognitive Impairment and Alzheimer's Disease.

J Alzheimers Dis. 2021

[5]
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.

Neuroimage Clin. 2019-7-4

[6]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[7]
Classification of Alzheimer's Disease and Mild Cognitive Impairment Based on Cortical and Subcortical Features from MRI T1 Brain Images Utilizing Four Different Types of Datasets.

J Healthc Eng. 2020

[8]
Alzheimer's disease diagnosis from diffusion tensor images using convolutional neural networks.

PLoS One. 2020-3-24

[9]
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.

Int J Neural Syst. 2020-6

[10]
A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients.

Behav Brain Res. 2019-3-2

引用本文的文献

[1]
DenseIncepS115: a novel network-level fusion framework for Alzheimer's disease prediction using MRI images.

Front Oncol. 2024-12-3

[2]
Self-Supervised Learning for Near-Wild Cognitive Workload Estimation.

J Med Syst. 2024-11-22

[3]
A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks.

Front Comput Neurosci. 2024-10-17

[4]
Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification.

Brain Inform. 2024-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索