Suppr超能文献

马克斯克鲁维酵母在非常低的钾浓度下的优异生长是由高亲和力钾转运蛋白 Hak1 实现的。

The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1.

机构信息

Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague 4, Czechia.

School of Microbiology, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland.

出版信息

FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae031.

Abstract

The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.

摘要

非常规酵母克鲁维酵母(Kluyveromyces marxianus)最近成为许多食品、环境和生物技术应用的有前途的候选者。这种酵母耐热,在许多不利条件下都能健壮生长。在这里,我们表明,它在低钾条件下生长的能力比酿酒酵母(Saccharomyces cerevisiae)强得多,这表明该物种具有非常高效和高亲和力的钾摄取系统。克鲁维酵母基因组包含两个推测的钾转运蛋白基因:KmHAK1 和 KmTRK1。为了鉴定这两个基因的产物,我们在克鲁维酵母中构建了单敲除和双敲除突变体,并在缺乏钾转运体的酿酒酵母突变体中表达了这两个基因。我们在克鲁维酵母和酿酒酵母中的结果表明,这两个基因都编码高效的高亲和力钾转运蛋白,有助于钾稳态,并维持质膜电位和细胞质 pH。在克鲁维酵母中,HAK1 的存在比 TRK1 更能支持在低钾条件下的生长,这可能是因为 KmHak1 的底物亲和力比 KmTrk1 高约 10 倍,并且在钾饥饿时其表达被诱导约 80 倍。KmHak1 对克鲁维酵母和酿酒酵母的耐盐应激生存至关重要。在与 ScTrk1 和 ScTrk2 的共表达实验中,其稳健性有助于提高酿酒酵母细胞对钠盐和锂盐应激的耐受性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eccb/11484806/83af217949d6/foae031fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验