Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
BMC Infect Dis. 2024 Oct 3;24(1):1099. doi: 10.1186/s12879-024-10000-3.
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
持续的 COVID-19 大流行是由 SARS-CoV-2 病毒引起的,是近年来全球最重大的卫生危机之一。尽管对 COVID-19 的免疫机制和治疗选择进行了广泛的研究,但针对浆细胞的研究仍然很少。在这项研究中,我们使用 DESeq2 软件包,通过数据集 GSE157103 和 GSE152641 识别 COVID-19 患者和对照之间的差异表达基因 (DEGs)。我们利用 xCell 算法进行免疫浸润分析,结果表明 COVID-19 患者的浆细胞水平明显高于健康个体。随后,我们应用加权基因共表达网络分析 (WGCNA) 算法识别与 COVID-19 相关的浆细胞模块基因。此外,从单细胞 RNA 测序数据 (GSE171524) 中提取浆细胞的阳性聚类生物标志物基因,确定了 122 个共同基因,这些基因参与了细胞周期调控和病毒感染途径等关键生物学过程。我们使用 Cytoscape 构建了一个由 89 个基因组成的稳健蛋白质-蛋白质相互作用 (PPI) 网络,并通过 cytoHubba 确定了 20 个枢纽基因。这些基因在外部数据集 (GSE152418 和 GSE179627) 中得到验证。此外,我们还鉴定了三种可能的小分子 (GSK-1070916、BRD-K89997465 和伊达比星),这些小分子可靶向网络中的关键枢纽基因,提示了一种新的治疗方法。这些化合物的特征是能够有效地下调 AURKB、KIF11 和 TOP2A,这一点通过使用 cMAP 和 AutoDock 进行的计算分析确定的低自由结合能得到了证实。这项研究标志着首次全面探索浆细胞在 COVID-19 中的作用,为新的治疗靶点提供了新的见解。它强调了系统理解和治疗 COVID-19 的重要性,扩大了当前的知识体系,并为未来的研究奠定了基础。
Eur Rev Med Pharmacol Sci. 2021-4
Cell Mol Life Sci. 2024-5-20
Medicine (Baltimore). 2024-4-12
Comput Struct Biotechnol J. 2024-3-1
Eur Rev Med Pharmacol Sci. 2023-10