Purbayanto Muhammad Abiyyu Kenichi, Chandel Madhurya, Bury Dominika, Wójcik Anna, Moszczyńska Dorota, Tabassum Anika, Mochalin Vadym N, Naguib Michael, Jastrzębska Agnieszka Maria
Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.
Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw 02-525, Poland.
Langmuir. 2024 Oct 15;40(41):21547-21558. doi: 10.1021/acs.langmuir.4c02444. Epub 2024 Oct 3.
TiO/MXene heterostructure has garnered significant interest as a photocatalyst due to its large surface area and efficient charge carrier separation at the interface. However, current synthesis methods produce TiO without clear crystal faceting and often require complicated postprocessing step, limiting its practical applications. We demonstrate a facile and controlled microwave-assisted hydrothermal synthesis for transforming multilayered TiCN MXene to a truncated-bipyramidal TiO/TiCN heterostructure. The resulting TiO nanocrystals at the TiCN surface exhibited crystalline anatase truncated bipyramids, exposing {001} and {101} facets. We further tailored an indirect optical band gap of the TiO/TiCN heterostructure in the range of 3.17-3.23 eV by varying the hydrothermal synthesis time from 15 min to 5 h at a fixed temperature of 160 °C. Efficient charge separation allowed us to decompose 97% of methylene blue (MB) within 30 min of ultraviolet (UV) light irradiation, ∼3.9-fold faster than the benchmark P25, higher than any other TiO/MXene heterostructures. With simulated white light, we achieved over 60% efficiency of the dye decomposition within 2 h of irradiation, which resulted in 1.5-fold faster kinetics than P25. We also observed a similar excellent performance of TiCN-derived TiO in decomposing various persistent synthetic dyes, including commercial textile dye, methyl orange, and rhodamine B. In conclusion, our study provides a strategy for utilizing MXene chemical reactivity to produce highly crystalline optically active TiO/TiCN heterostructure. The developed heterostructure can serve as an efficient photocatalyst for the degradation of organic pollutants.
TiO/MXene异质结构因其大表面积和界面处高效的电荷载流子分离而作为光催化剂引起了广泛关注。然而,目前的合成方法制备的TiO没有清晰的晶体刻面,且通常需要复杂的后处理步骤,限制了其实际应用。我们展示了一种简便且可控的微波辅助水热合成方法,用于将多层TiCN MXene转变为截顶双锥体TiO/TiCN异质结构。在TiCN表面生成的TiO纳米晶体呈现出结晶锐钛矿截顶双锥体,暴露{001}和{101}晶面。我们通过在160°C的固定温度下将水热合成时间从15分钟变化到5小时,进一步调整了TiO/TiCN异质结构的间接光学带隙,范围为3.17 - 3.23 eV。高效的电荷分离使我们能够在紫外光照射30分钟内分解97%的亚甲基蓝(MB),比基准P25快约3.9倍,高于任何其他TiO/MXene异质结构。在模拟白光下,我们在照射2小时内实现了超过60%的染料分解效率,动力学比P25快1.5倍。我们还观察到源自TiCN的TiO在分解各种持久性合成染料(包括商业纺织染料、甲基橙和罗丹明B)方面具有类似的优异性能。总之,我们的研究提供了一种利用MXene化学反应性来制备高度结晶的光学活性TiO/TiCN异质结构的策略。所开发的异质结构可作为降解有机污染物的高效光催化剂。