Yoon Hong Yeon, Yoo Hyunjoon, Mahato Manmatha, Kim Jong Hun, Dieng Sokhna, Ahn Chi Won, Gogotsi Yury, Oh Il-Kwon, Park Jeong Young
Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Nano Lett. 2025 Jun 18;25(24):9817-9824. doi: 10.1021/acs.nanolett.5c02270. Epub 2025 Jun 7.
MXenes, a class of two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, exhibit promising tribological properties at the nanoscale. However, the influence of X elements on the surface chemistry of MXene atomic layers remains underexplored. Here, we investigate how nitrogen in the TiCN atomic layer modifies its nanotribological behavior compared to TiC. Using friction force microscopy and peak force quantitative nanomechanics , we find that TiCN exhibits a notable increase in friction along with higher adhesion and energy dissipation, which we attribute to enhanced hydroxyl termination, stronger surface dipole interactions, and hydrogen bonding. X-ray photoelectron spectroscopy further reveals that nitrogen incorporation leads to greater electron withdrawal from titanium atoms, resulting in a higher oxidation state and altered surface chemical functionality. These results provide mechanistic insight into how X-element chemistry influences the tribological performance of MXenes, highlighting the importance of surface composition in designing 2D materials for specific applications.
MXenes是一类二维(2D)过渡金属碳化物、氮化物和碳氮化物,在纳米尺度上展现出有前景的摩擦学性能。然而,X元素对MXene原子层表面化学的影响仍未得到充分探索。在此,我们研究了与TiC相比,TiCN原子层中的氮如何改变其纳米摩擦学行为。使用摩擦力显微镜和峰值力定量纳米力学,我们发现TiCN的摩擦力显著增加,同时粘附力和能量耗散更高,我们将其归因于增强的羟基终止、更强的表面偶极相互作用和氢键。X射线光电子能谱进一步揭示,氮的掺入导致从钛原子中更大程度的电子提取,从而导致更高的氧化态和改变的表面化学官能团。这些结果为X元素化学如何影响MXenes的摩擦学性能提供了机理见解,突出了表面组成在设计用于特定应用的二维材料中的重要性。