Suppr超能文献

应用于澳大利亚2022年新冠病毒奥密克戎毒株浪潮的数据科学流程。

A data science pipeline applied to Australia's 2022 COVID-19 Omicron waves.

作者信息

Trauer James M, Hughes Angus E, Shipman David S, Meehan Michael T, Henderson Alec S, McBryde Emma S, Ragonnet Romain

机构信息

School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.

出版信息

Infect Dis Model. 2024 Aug 24;10(1):99-109. doi: 10.1016/j.idm.2024.08.005. eCollection 2025 Mar.

Abstract

The field of software engineering is advancing at astonishing speed, with packages now available to support many stages of data science pipelines. These packages can support infectious disease modelling to be more robust, efficient and transparent, which has been particularly important during the COVID-19 pandemic. We developed a package for the construction of infectious disease models, integrated it with several open-source libraries and applied this composite pipeline to multiple data sources that provided insights into Australia's 2022 COVID-19 epidemic. We aimed to identify the key processes relevant to COVID-19 transmission dynamics and thereby develop a model that could quantify relevant epidemiological parameters. The pipeline's advantages include markedly increased speed, an expressive application programming interface, the transparency of open-source development, easy access to a broad range of calibration and optimisation tools and consideration of the full workflow from input manipulation through to algorithmic generation of the publication materials. Extending the base model to include mobility effects slightly improved model fit to data, with this approach selected as the model configuration for further epidemiological inference. Under our assumption of widespread immunity against severe outcomes from recent vaccination, incorporating an additional effect of the main vaccination programs rolled out during 2022 on transmission did not further improve model fit. Our simulations suggested that one in every two to six COVID-19 episodes were detected, subsequently emerging Omicron subvariants escaped 30-60% of recently acquired natural immunity and that natural immunity lasted only one to eight months on average. We documented our analyses algorithmically and present our methods in conjunction with interactive online code notebooks and plots. We demonstrate the feasibility of integrating a flexible domain-specific syntax library with state-of-the-art packages in high performance computing, calibration, optimisation and visualisation to create an end-to-end pipeline for infectious disease modelling. We used the resulting platform to demonstrate key epidemiological characteristics of the transition from the emergency to the endemic phase of the COVID-19 pandemic.

摘要

软件工程领域正以惊人的速度发展,现在有各种软件包可用于支持数据科学流程的多个阶段。这些软件包能使传染病建模更稳健、高效和透明,这在新冠疫情期间尤为重要。我们开发了一个用于构建传染病模型的软件包,将其与多个开源库集成,并将这个复合流程应用于多个数据源,从而深入了解了澳大利亚2022年的新冠疫情。我们旨在确定与新冠病毒传播动态相关的关键过程,进而开发一个能够量化相关流行病学参数的模型。该流程的优势包括显著提高速度、具有表现力的应用程序编程接口、开源开发的透明度、易于使用各种校准和优化工具,以及考虑从输入处理到算法生成发布材料的整个工作流程。将基础模型扩展以纳入流动性影响,略微改善了模型对数据的拟合度,这种方法被选为用于进一步流行病学推断的模型配置。在我们关于近期疫苗接种产生广泛的针对严重后果的免疫力的假设下,纳入2022年推出的主要疫苗接种计划对传播的额外影响并没有进一步改善模型拟合度。我们的模拟表明,每两到六次新冠病毒感染事件中会有一次被检测到,随后出现的奥密克戎亚变体躲过了30%至60%最近获得的自然免疫力,并且自然免疫力平均仅持续一到八个月。我们以算法方式记录了我们的分析,并结合交互式在线代码笔记本和图表展示了我们的方法。我们展示了将一个灵活的特定领域语法库与高性能计算、校准、优化和可视化方面的先进软件包集成,以创建一个传染病建模的端到端流程的可行性。我们利用由此产生的平台展示了新冠疫情从紧急阶段过渡到流行阶段的关键流行病学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f47/11447346/60412581a5bb/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验