Suppr超能文献

镍基助催化剂增强光电化学酒精氧化中的质子耦合电子转移

Proton-Coupled Electron Transfer in Photoelectrochemical Alcohol Oxidation Enhanced by Nickel-Based Cocatalysts.

作者信息

Gao Bin, Mu Xiaowei, Feng Jianyong, Huang Huiting, Liu Jianming, Liu Wangxi, Zou Zhigang, Li Zhaosheng

机构信息

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, PR China.

Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, PR China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413298. doi: 10.1002/anie.202413298. Epub 2024 Nov 6.

Abstract

Using biomass oxidation reactions instead of water oxidation reactions is optimal for accomplishing biomass conversion and effective hydrogen generation. Here, we report that α-FeO photoanodes with a NiOOH cocatalyst exhibit excellent performance for photoelectrochemical oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The conversion efficiency for HMF reaches 98.5 %, while the selectivity for FDCA is 94.2 %. We revealed that HMF is oxidized through a spontaneous proton-coupled electron transfer (PCET) process with the high-valent phase of the Ni-based catalyst. The dangling oxygen and bridging oxygen of the high-valent phase species serve as proton-accepting sites. Furthermore, we pointed out that the deprotonated bond dissociation free energy difference between the catalysts and alcohols is the thermodynamic trigger for the PCET process. This study provides a reasonable explanation for the alcohol oxidation reaction, which is beneficial for designing biomass conversion systems.

摘要

使用生物质氧化反应而非水氧化反应对于实现生物质转化和高效产氢是最优的。在此,我们报道了具有NiOOH助催化剂的α-FeO光阳极在将5-羟甲基糠醛(HMF)光电化学氧化为2,5-呋喃二甲酸(FDCA)方面表现出优异性能。HMF的转化效率达到98.5%,而FDCA的选择性为94.2%。我们揭示了HMF是通过与镍基催化剂的高价相发生自发的质子耦合电子转移(PCET)过程而被氧化的。高价相物种的悬空氧和桥连氧作为质子接受位点。此外,我们指出催化剂与醇之间去质子化键解离自由能差是PCET过程的热力学触发因素。本研究为醇氧化反应提供了合理的解释,这有利于设计生物质转化系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验