de Araujo Cristiano Miranda, Freitas Pedro Felipe de Jesus, Ferraz Aline Xavier, Andreis Patricia Kern Di Scala, Meger Michelle Nascimento, Baratto-Filho Flares, Augusto Rodenbusch Poletto Cesar, Küchler Erika Calvano, Camargo Elisa Souza, Schroder Angela Graciela Deliga
School of Dentistry, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
Postgraduate Program in Human Communication Health, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
Orthod Craniofac Res. 2025 Feb;28(1):207-215. doi: 10.1111/ocr.12863. Epub 2024 Oct 4.
To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques.
The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K-Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5-fold cross-validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed.
The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74-0.98] for test data to 0.89 [CI95% = 0.86-0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms.
The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.
通过监督机器学习技术,基于上颌骨测量来预测腭侧埋伏阻生上颌尖牙。
分析138例患者的上颌骨图像,以研究通过锥形束计算机断层扫描获得的磨牙间宽度、前磨牙间宽度、翼突间宽度、上颌长度、上颌宽度、鼻腔宽度和鼻孔宽度。使用以下机器学习算法构建预测模型:Adaboost分类器、决策树、梯度提升分类器、K近邻(KNN)、逻辑回归、多层感知器分类器(MLP)、随机森林分类器和支持向量机(SVM)。采用5折交叉验证方法验证每个模型。计算每个模型的曲线下面积(AUC)、准确率、召回率、精确率和F1分数等指标,并构建ROC曲线。
预测模型包括四个变量(两个牙齿测量变量和两个骨骼测量变量)。翼突间宽度和鼻孔宽度显示出最大的效应量。梯度提升分类器算法表现出最佳指标,测试数据的AUC值范围为0.91[CI95%=0.74-0.98],交叉验证的AUC值范围为0.89[CI95%=0.86-0.94]。鼻孔宽度变量在所有测试算法中显示出最高的重要性。
通过监督机器学习技术使用上颌骨测量是预测腭侧埋伏阻生上颌尖牙的一种有前景的方法。在评估的模型中,梯度提升分类器和随机森林分类器均表现出最佳性能指标,准确率和AUC值超过0.8,表明具有强大的预测能力。