Suppr超能文献

通过比较德米尔坚方法和机器学习对巴西东南部青少年进行牙龄估计

Dental age estimation by comparing Demirjian's method and machine learning in Southeast Brazilian youth.

作者信息

Abuabara Allan, do Nascimento Thais Vilalba Paniagua Machado, da Cruz Kaliane Rodrigues, Küchler Erika Calvano, Madalena Isabela Ribeiro, de Oliveira Maria Beatriz Carvalho Ribeiro, Lepri César Penazzo, de Menezes-Oliveira Maria Angélica Hueb, de Araujo Cristiano Miranda, Baratto-Filho Flares

机构信息

Universidade da Região de Joinville (University of the Joinville Region- Univille), Rua Paulo Malschitzki, no 10 Campus Universitário - Distrito Industrial, Joinville, SC, 89219-710, Brazil.

Tuiuti University of Paraná- UTP, Curitiba, Paraná, Brazil.

出版信息

Forensic Sci Med Pathol. 2025 Jul 11. doi: 10.1007/s12024-025-01042-3.

Abstract

This study evaluated the applicability of combining Demirjian's method with machine learning algorithms to estimate the chronological age of children and adolescents from southeastern Brazil, using dental development stages as predictive variables. A retrospective study was conducted using 610 digital panoramic radiographs of children and adolescents. Demirjian's method was applied to classify the permanent mandibular teeth into eight developmental stages. Eight machine learning models-Linear Regression, Gradient Boosting Regressor, K-Nearest Neighbors Regressor, Support Vector Regression, Multilayer Perceptron Regressor, Decision Tree Regressor, Random Forest Regressor, and AdaBoost Regressor-were trained and evaluated using five-fold cross-validation. Model accuracy was compared to the traditional method using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R²). Paired Student's t-tests were used to compare actual chronological age with predicted age estimates, and bootstrapping with 1,000 iterations was performed to calculate 95% confidence intervals (CI95%). Machine learning-based models achieved predictive errors of less than 1.5 years. The Gradient Boosting and Random Forest models demonstrated the highest performance, with an MAE of 0.75 (95% CI: [0.66-0.85]) and an RMSE of 0.92 (95% CI: [0.81-1.05]), representing a 44.03% reduction in MAE and a 43.56% reduction in RMSE compared to Demirjian's method (MAE = 1.34, RMSE = 1.63). Integrating machine learning with Demirjian's method improved the accuracy of dental age estimation, reducing errors and enhancing the reliability of the approach. The application of artificial intelligence reduces the mean absolute error of the dental age estimation method. This approach can optimize diagnoses and assist in both clinical and forensic settings, providing a more precise and adaptable tool for diverse populations.

摘要

本研究评估了将德米尔坚方法与机器学习算法相结合,以巴西东南部儿童和青少年的牙齿发育阶段作为预测变量来估计其实际年龄的适用性。使用610张儿童和青少年的数字化全景X线片进行了一项回顾性研究。应用德米尔坚方法将恒牙下颌牙分为八个发育阶段。使用五折交叉验证对八个机器学习模型——线性回归、梯度提升回归器、K近邻回归器、支持向量回归、多层感知器回归器、决策树回归器、随机森林回归器和自适应增强回归器进行了训练和评估。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R²)将模型准确性与传统方法进行比较。使用配对学生t检验比较实际年龄与预测年龄估计值,并进行1000次迭代的自助法计算95%置信区间(CI95%)。基于机器学习的模型实现了小于1.5岁的预测误差。梯度提升和随机森林模型表现出最高性能,MAE为0.75(95%CI:[0.66 - 0.85]),RMSE为0.92(95%CI:[0.81 - 1.05]),与德米尔坚方法(MAE = 1.34,RMSE = 1.63)相比,MAE降低了44.03%,RMSE降低了43.56%。将机器学习与德米尔坚方法相结合提高了牙齿年龄估计的准确性,减少了误差并增强了该方法的可靠性。人工智能的应用降低了牙齿年龄估计方法的平均绝对误差。这种方法可以优化诊断,并在临床和法医环境中提供帮助,为不同人群提供更精确和适用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验