Hu Hui, Zhou Yang, Xi Bin, Li Yuanchao
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China.
School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202417357. doi: 10.1002/anie.202417357. Epub 2024 Nov 6.
With the development of mechanophores, polymer mechanochemistry has emerged as a powerful tool for creating force-responsive materials with a variety of desired functions, ranging from color change to molecular release. However, it remains challenging to improve the efficiency of mechanochemical activation, especially for mechanophores embedded within polymer networks, which has profound implications for translating mechanochemical responses into materials-centered applications. The physical and chemical conditions under spatial confinement differ significantly from those in the surrounding bulk environment, offering opportunities to facilitate mechanochemical activation. In this Minireview, we discuss and summarize recent progress in polymer mechanochemistry within confined spaces including surfaces/interfaces, polymer assemblies, and other nanostructures, specifically focusing on the effects of spatial confinement on the enhancement of mechanophore activation. We envision that combining confinement effects with advances in molecular and materials engineering will further improve the activation efficiency, capitalizing more fully on the potential of mechanophores toward practical applications.
随着力化学基团的发展,聚合物机械化学已成为一种强大的工具,可用于制备具有各种所需功能的力响应材料,从颜色变化到分子释放。然而,提高机械化学活化效率仍然具有挑战性,特别是对于嵌入聚合物网络中的力化学基团而言,这对于将机械化学反应转化为以材料为中心的应用具有深远影响。空间限制下的物理和化学条件与周围本体环境中的条件有显著差异,这为促进机械化学活化提供了机会。在这篇小型综述中,我们讨论并总结了在受限空间(包括表面/界面、聚合物组装体和其他纳米结构)内聚合物机械化学的最新进展,特别关注空间限制对力化学基团活化增强的影响。我们设想,将限制效应与分子和材料工程的进展相结合,将进一步提高活化效率,更充分地利用力化学基团在实际应用中的潜力。