Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, United States.
Donald Bren School of Information and Computer Sciences, University of California Irvine, Irvine, CA, United States.
JMIR Res Protoc. 2024 Oct 4;13:e55761. doi: 10.2196/55761.
An estimated 6.7 million persons are living with dementia in the United States, a number expected to double by 2060. Persons experiencing moderate to severe dementia are 4 to 5 times more likely to fall than those without dementia, due to agitation and unsteady gait. Socially assistive robots fail to address the changing emotional states associated with agitation, and it is unclear how emotional states change, how they impact agitation and gait over time, and how social robots can best respond by showing empathy.
This study aims to design and validate a foundational model of emotional intelligence for empathetic patient-robot interaction that mitigates agitation among those at the highest risk: persons experiencing moderate to severe dementia.
A design science approach will be adopted to (1) collect and store granular, personal, and chronological data using Personicle (an open-source software platform developed to automatically collect data from phones and other devices), incorporating real-time visual, audio, and physiological sensing technologies in a simulation laboratory and at board and care facilities; (2) develop statistical models to understand and forecast the emotional state, agitation level, and gait pattern of persons experiencing moderate to severe dementia in real time using machine learning and artificial intelligence and Personicle; (3) design and test an empathy-focused conversation model, focused on storytelling; and (4) test and evaluate this model for a care companion robot (CCR) in the community.
The study was funded in October 2023. For aim 1, architecture development for Personicle data collection began with a search for existing open-source data in January 2024. A community advisory board was formed and met in December 2023 to provide feedback on the use of CCRs and provide personal stories. Full institutional review board approval was received in March 2024 to place cameras and CCRs at the sites. In March 2024, atomic marker development was begun. For aim 2, after a review of open-source data on patients with dementia, the development of an emotional classifier was begun. Data labeling was started in April 2024 and completed in June 2024 with ongoing validation. Moreover, the team established a baseline multimodal model trained and validated on healthy-person data sets, using transformer architecture in a semisupervised manner, and later retrained on the labeled data set of patients experiencing moderate to severe dementia. In April 2024, empathy alignment of large language models was initiated using prompt engineering and reinforcement learning.
This innovative caregiving approach is designed to recognize the signs of agitation and, upon recognition, intervene with empathetic verbal communication. This proposal has the potential to have a significant impact on an emerging field of computational dementia science by reducing unnecessary agitation and falls of persons experiencing moderate to severe dementia, while reducing caregiver burden.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/55761.
据估计,美国有 670 万人患有痴呆症,到 2060 年,这一数字预计将翻一番。由于躁动和步态不稳,患有中度至重度痴呆症的人跌倒的可能性是没有痴呆症的人的 4 到 5 倍。社交辅助机器人无法解决与躁动相关的不断变化的情绪状态,也不清楚情绪状态如何随时间变化,它们如何影响躁动和步态,以及社交机器人如何通过表现出同理心来做出最佳反应。
本研究旨在设计和验证一种用于移情患者-机器人交互的情感智能基础模型,以减轻处于最高风险的人群(即患有中度至重度痴呆症的人群)的躁动。
采用设计科学方法(1)使用 Personicle(一个用于自动从手机和其他设备收集数据的开源软件平台)收集和存储个人、个性化和时间顺序数据,同时在模拟实验室和寄宿护理设施中结合实时视觉、音频和生理感应技术;(2)使用机器学习和人工智能以及 Personicle 开发统计模型,实时了解和预测患有中度至重度痴呆症的人的情绪状态、躁动水平和步态模式;(3)设计和测试关注讲故事的以同理心为重点的对话模型;(4)在社区中测试和评估该模型用于陪伴机器人(CCR)。
该研究于 2023 年 10 月获得资助。对于目标 1,于 2024 年 1 月开始进行 Personicle 数据收集架构的开发,以寻找现有的开源数据。于 2023 年 12 月成立了一个社区咨询委员会,并举行会议,就 CCR 的使用提供反馈意见并分享个人故事。2024 年 3 月获得机构审查委员会的全面批准,在这些地点安装摄像头和 CCR。2024 年 3 月开始开发原子标记。对于目标 2,在对痴呆症患者的开源数据进行审查后,开始开发情感分类器。2024 年 4 月开始进行数据标记,并于 2024 年 6 月完成标记,同时继续进行验证。此外,该团队还建立了一个基于健康人数据集的、使用变压器架构以半监督方式训练和验证的基本多模态模型,并在标记的中度至重度痴呆症患者数据集上重新进行训练。2024 年 4 月,使用提示工程和强化学习开始启动大型语言模型的同理心对齐。
这种创新的护理方法旨在识别躁动的迹象,并在识别后通过富有同情心的口头交流进行干预。该提案有可能通过减少中度至重度痴呆症患者不必要的躁动和跌倒,同时减轻护理人员的负担,对计算痴呆症科学这一新兴领域产生重大影响。
国际注册报告标识符(IRRID):PRR1-10.2196/55761。