Wang He, Xu Yang, Wu Zebin, Wei Zhihui
IEEE Trans Neural Netw Learn Syst. 2024 Oct 4;PP. doi: 10.1109/TNNLS.2024.3457781.
Hyperspectral image (HSI) and multispectral image (MSI) fusion aims to generate high spectral and spatial resolution hyperspectral image (HR-HSI) by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI). However, existing fusion methods encounter challenges such as unknown degradation parameters, and incomplete exploitation of the correlation between high-dimensional structures and deep image features. To overcome these issues, in this article, an unsupervised blind fusion method for LR-HSI and HR-MSI based on Tucker decomposition and spatial-spectral manifold learning (DTDNML) is proposed. We design a novel deep Tucker decomposition network that maps LR-HSI and HR-MSI into a consistent feature space, achieving reconstruction through decoders with shared parameters. To better exploit and fuse spatial-spectral features in the data, we design a core tensor fusion network (CTFN) that incorporates a spatial-spectral attention mechanism for aligning and fusing features at different scales. Furthermore, to enhance the capacity to capture global information, a Laplacian-based spatial-spectral manifold constraint is introduced in shared-decoders. Sufficient experiments have validated that this method enhances the accuracy and efficiency of hyperspectral and multispectral fusion on different remote sensing datasets. The source code is available at https://github.com/Shawn-H-Wang/DTDNML.
高光谱图像(HSI)与多光谱图像(MSI)融合旨在通过融合高分辨率多光谱图像(HR-MSI)和低分辨率高光谱图像(LR-HSI)来生成具有高光谱和空间分辨率的高光谱图像(HR-HSI)。然而,现有的融合方法面临诸如未知退化参数以及对高维结构与深度图像特征之间相关性的不完全利用等挑战。为克服这些问题,本文提出了一种基于塔克分解和空间 - 光谱流形学习的LR-HSI和HR-MSI无监督盲融合方法(DTDNML)。我们设计了一种新颖的深度塔克分解网络,将LR-HSI和HR-MSI映射到一个一致的特征空间,通过具有共享参数的解码器实现重建。为了更好地利用和融合数据中的空间 - 光谱特征,我们设计了一个核心张量融合网络(CTFN),该网络纳入了空间 - 光谱注意力机制,用于在不同尺度上对齐和融合特征。此外,为了增强捕获全局信息的能力,在共享解码器中引入了基于拉普拉斯的空间 - 光谱流形约束。充分的实验验证了该方法提高了在不同遥感数据集上进行高光谱和多光谱融合的准确性和效率。源代码可在https://github.com/Shawn-H-Wang/DTDNML获取。