Yang Jingxiang, Xiao Liang, Zhao Yong-Qiang, Chan Jonathan Cheung-Wai
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):13017-13031. doi: 10.1109/TNNLS.2023.3266038. Epub 2024 Sep 3.
Fusing low-resolution (LR) hyperspectral images (HSIs) with high-resolution (HR) multispectral images (MSIs) is a significant technology to enhance the resolution of HSIs. Despite the encouraging results from deep learning (DL) in HSI-MSI fusion, there are still some issues. First, the HSI is a multidimensional signal, and the representability of current DL networks for multidimensional features has not been thoroughly investigated. Second, most DL HSI-MSI fusion networks need HR HSI ground truth for training, but it is often unavailable in reality. In this study, we integrate tensor theory with DL and propose an unsupervised deep tensor network (UDTN) for HSI-MSI fusion. We first propose a tensor filtering layer prototype and further build a coupled tensor filtering module. It jointly represents the LR HSI and HR MSI as several features revealing the principal components of spectral and spatial modes and a sharing code tensor describing the interaction among different modes. Specifically, the features on different modes are represented by the learnable filters of tensor filtering layers, the sharing code tensor is learned by a projection module, in which a co-attention is proposed to encode the LR HSI and HR MSI and then project them onto the sharing code tensor. The coupled tensor filtering module and projection module are jointly trained from the LR HSI and HR MSI in an unsupervised and end-to-end way. The latent HR HSI is inferred with the sharing code tensor, the features on spatial modes of HR MSIs, and the spectral mode of LR HSIs. Experiments on simulated and real remote-sensing datasets demonstrate the effectiveness of the proposed method.
将低分辨率(LR)高光谱图像(HSIs)与高分辨率(HR)多光谱图像(MSIs)融合是提高HSIs分辨率的一项重要技术。尽管深度学习(DL)在HSI-MSI融合方面取得了令人鼓舞的成果,但仍存在一些问题。首先,HSI是一种多维信号,目前DL网络对多维特征的表示能力尚未得到充分研究。其次,大多数DL HSI-MSI融合网络需要HR HSI地面真值进行训练,但在实际中往往无法获得。在本研究中,我们将张量理论与DL相结合,提出了一种用于HSI-MSI融合的无监督深度张量网络(UDTN)。我们首先提出了一个张量滤波层原型,并进一步构建了一个耦合张量滤波模块。它将LR HSI和HR MSI共同表示为几个揭示光谱和空间模式主成分的特征以及一个描述不同模式之间相互作用的共享代码张量。具体来说,不同模式上的特征由张量滤波层的可学习滤波器表示,共享代码张量由一个投影模块学习,其中提出了一种协同注意力机制来对LR HSI和HR MSI进行编码,然后将它们投影到共享代码张量上。耦合张量滤波模块和投影模块以无监督且端到端的方式从LR HSI和HR MSI中进行联合训练。利用共享代码张量、HR MSIs空间模式上的特征和LR HSIs的光谱模式推断出潜在的HR HSI。在模拟和真实遥感数据集上的实验证明了所提方法的有效性。