Suppr超能文献

通过 CDR 结构引导突变提高中和 SARS-CoV-2 纳米抗体的亲和力。

Structure-guided mutations in CDRs for enhancing the affinity of neutralizing SARS-CoV-2 nanobody.

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.

Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India.

出版信息

Biochem Biophys Res Commun. 2024 Nov 19;734:150746. doi: 10.1016/j.bbrc.2024.150746. Epub 2024 Sep 26.

Abstract

The optimization of antibodies to attain the desired levels of affinity and specificity holds great promise for the development of next generation therapeutics. This study delves into the refinement and engineering of complementarity-determining regions (CDRs) through in silico affinity maturation followed by binding validation using isothermal titration calorimetry (ITC) and pseudovirus-based neutralization assays. Specifically, it focuses on engineering CDRs targeting the epitopes of receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. A structure-guided virtual library of 112 single mutations in CDRs was generated and screened against RBD to select the potential affinity-enhancing mutations. Protein-protein docking analysis identified 32 single mutants of which nine mutants were selected for molecular dynamics (MD) simulations. Subsequently, biophysical ITC studies provided insights into binding affinity, and consistent with in silico findings, six mutations that demonstrated better binding affinity than native nanobody were further tested in vitro for neutralization activity against SARS-CoV-2 pseudovirus. Leu106Thr mutant was found to be most effective in virus-neutralization with IC values of ∼0.03 μM, as compared to the native nanobody (IC ∼0.77 μM). Thus, in this study, the developed computational pipeline guided by structure-aided interface profiles and thermodynamic analysis holds promise for the streamlined development of antibody-based therapeutic interventions against emerging variants of SARS-CoV-2 and other infectious pathogens.

摘要

通过计算机亲和力成熟,然后使用等温滴定量热法(ITC)和假病毒中和测定来验证结合,对抗体进行优化以达到所需的亲和力和特异性水平,这为下一代治疗药物的开发带来了巨大的希望。本研究深入研究了通过计算机亲和力成熟,然后使用等温滴定量热法(ITC)和假病毒中和测定来验证结合,对互补决定区(CDR)进行精细化和工程化。特别是,它专注于针对 SARS-CoV-2 刺突蛋白受体结合域(RBD)表位的 CDR 工程。生成了一个基于结构的 112 个 CDR 单突变虚拟库,并对 RBD 进行筛选,以选择潜在的增强亲和力的突变。蛋白质-蛋白质对接分析确定了 32 个单突变体,其中 9 个突变体被选为分子动力学(MD)模拟。随后,生物物理 ITC 研究提供了关于结合亲和力的见解,与计算机模拟结果一致,六个比天然纳米体具有更好结合亲和力的突变体进一步在体外针对 SARS-CoV-2 假病毒进行中和活性测试。与天然纳米体(IC∼0.77μM)相比,Leu106Thr 突变体在病毒中和方面最为有效,IC 值约为 0.03μM。因此,在这项研究中,由结构辅助界面轮廓和热力学分析指导的开发计算管道为针对 SARS-CoV-2 和其他传染病原体的新兴变体的基于抗体的治疗干预措施的精简开发提供了希望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验